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QUESTION PAPER
(June - 2017)

(Solved)

BASIC MATHEMATICS

Time: 3 hours |

[Maximum Marks: 100

Note: Question no. 1 is compulsory. Attempt any three questions from the remaining four questions.

Q. 1. (@) Show that:

aZ

PO -0y e—a) =)
c c

0 c—a -4
1 b b’

1 c e

Taking (c — a) common from R, then.
0 1 (c+ a)

= (c-a)|l b P’
1 ¢

2
C

R.—>R~-R,
0 1 (c+a)
= (c—a) 1 b b’
1 b—c b*-¢2
Taking (b — ¢) common R, then.
0 1 c+a
:(cfa)(bfc)l b b
0 1 b+c

Expanding along R, then

1 c+a
1 b+c

(c —a)(b—c)

= (c—a)(b—c) [b+c—c—a]

= (c—a)(b-c)(b-a).

(b) Using determinants, find the area of the
triangle whose vertices are (1,2), (-2,3) and (-3,
- 4).

Sol. Using determinants, given vertices are
(1,2) (-=2,3)and (- 3,— 4) . We have the determinant
of order 3.

1 2 1
1|
£ 21 s

2123 -4 1

Applying (R,—~R )and (R,~R))

1 2 1
_Li3 10
21-4 -6 0

Now expanding along c,, we have

1
= —(18+4

22 .
A= X =11 sq. units.

(c) Use the principle of mathematical
induction to prove that :

1 1 1 n

He) @06 )

+
n(n+1) n+1

for every natural number n.
Sol. We have to prove:

www.neerajbooks.com
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7
1 1 1
—t—+....
1.2 23

Forn =k+1

1 1 1
—t—+..t
1.2 23

On solving we get
(k+1)(k+2)
(k+2)’
Where n=k+ 1,

n.
Sol. Given a =22

64 =

64 =

128 =
n—12n+32 =
nn—8)—4(mn-8
(n=8)(n—-4) =
n =

SO n¢4,”l:

Put in S =

following function:

\

n(n+l)

(k+

n
n+1

(k+2)

1)

k+1

N k+2
then

n
k+1+1

n

n+l’

(d) If the first term of an A.P. is 22, the common
difference is — 4, and the sum to » terms is 64, find

—4
64

n

— [Ra+(m-1d]
— [2x22+@m—-1)(-4)]
— [44—4n + 4]
4n—4n’ + 4n

0

8.

0
4
8 then

~[2a+m-1)d]
S 2x22+(8-2)(—4)]

[44 — 28]
4x16

S, = 64

2
n
2
n
2
4
0
n
2
n
2
4

(e) Find the points of discontinuity of the

X if x>0

Jo= {x—l3,ifx£0

Sol. In order for a function f(x) to be continuous
at a given x value a.

Let x=3.
o fx) = f@
if U™ £(3) =x* = 9, which is true 9> 0.
if L™ £(3) = x+3=3+3=6whichin
false 6 <0.
Thus, f(x) = x + 3 is not continuous at
x=3.

b
P Ufy=ax + 3’ show that:

2

Ans. Ref.: See Chapter-9, Page No. 105,
Q. No. 15.

(g) Prove that the three medians of a triangle
meet at a point called centroid of the triangle which
divides each of the medians in the ratio 2 : 1.

Sol. The centroid divides each median in the ratio
2:1.

AG=GD = BG:GE=CG:GF=2:1
Let us connect the two mid-points E and F.
Then the triangle AEF and ACB are:
similar because.
AC = 2AE
AB = 2AF

LA is common for both AAEF and AACB.

A

o}

C

It follow that because triangles AEF and ACB
are similar the lines EF and CB are parallel and CB =
2 *EF

\

J
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MATHEMATICS

ALGEBRA-I

Determinants

INTRODUCTION

In algebra, the determinant is a special number
associated with any square matrix. The fundamental
geometric meaning of a determinant is a scale factor
for measure when the matrix is regarded as a linear
transformation. Also, we can say this is the mathematical
objects that are very useful in the analysis and solution
of systems of linear equations.

The linear equation is an algebraic equation in
which each term is either a constant or the product of a
constant and a single variable. Linear equations can
have one or more variables. Various elementary
methods are used to solve these linear equations which
involve two or three variables. But these methods are
not helpful where a large number of equations involve
more than three variables. Thus, few other methods are
involved for such equations; such as Matrices and
Determinants. By the end of this chapter, you will be
able to define a matrix and a determinant, addition and
multiplication of two matrix, obtain the determinant of
amatrix, and compute the inverse of a matrix, Matrices
and Determinants.

CHAPTER AT A GLANCE
DEFINITION

We define the determinant function
det : M (F) — F by induction on .
Whenn=1,detA=det[a] =a
a b
Whenn =2, detA—det{ d}zad—bc
c

When

a,, a a,, a a, a
22 23 21 23 21 22
( )alz det J+a13 det( J
Gy Ay Gy dy Gy 4y
Determinant

In double suffix notation, a determinant of order
n is defined as

all alz cee aln

a21 a22 cee azn

Ay Ay pz Ay,

It consists of n rows and n columns. The element
a,, a, ... can be real or complex or fraction. The
element a, belongs to the ith row and jth column. The
elements a,,, a,,, a,, ..., a_ consisting the leading
diagonal or principal diagonal of the determinant A.
Note: A determinant has definite value.
Determinant of a matrix: For any square matrix
of order 2, we have found a necessary and sufficient
condition for invertibility. Indeed, consider the matrix
The matrix A is invertible if and only if . We called
this number the determinant of A. It is clear from this,
that we would like to have a similar result for bigger
matrices (meaning higher orders). So is there a similar

www.neerajbooks.com
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notion of determinant for any square matrix, which
determines whether a square matrix is invertible or not?

In order to generalize such notion to higher orders,
we will need to study the determinant and see what kind
of properties it satisfies. First let us use the following
notation for the determinant.

General Formula for the Determinant Let A be
a square matrix of order n. Write A = (a,.j), where aij is
the entry on the row number i and the column number j,
fori=1,..,nandj=1,. n Foranyiandj, set A,
(called the cofactors) to be the determinant of the square
matrix of order (n — 1) obtained from A by removing
the row number i and the column number j multiplied
by (-1)i +j. We have

Jj=n

det(A)= D ayAy
j=1
for any fixed i, and
det(A)= Y a;A,
i=1
for any fixed . In other words, we have two type of
formulas: along a row (number 7) or along a column
(number j). Any row or any column will do. The trick is
to use a row or a column which has a lot of zeros.
In particular, we have along the rows

b
T e fl ld 1l |d e
d e f1=a kT e n
. g g
or
a b c dbc+acfab
= - e -
d e f okl e k| g h
k
or
a b c bc+ha c+kab
d e 1= 8 | |7 e
g h k

As an exercise write the formulas along the
columns.
Minors

If we delete the ith row and jth column in the
determinant D, we get another determinant of (n — 1)th
order called minor of the element a,.

y
Let us consider a determinant D, of third order,
A 4y a3
D, = |91 492 43
31 A3 dig

Let the minors of the elements a,,, a5, a3 **- as;
be denoted by M,;, M, --- respectively, then

ap; Ay
az; 4z

dy dxp
a3 Az

M, = , Mj, etc.

Co-factors
The co-factor of an element a; of a determinant A

is denoted by A;; and is defined by A, = (-1)"/M,.

Cofactors

¢, = (- 1)y M, for any minor M, of a, element.
Now we find cofactor of every element ofamxm
matrix, and put in matrix form, viz.,

1 G e Gy
C= G Cp Com ’
le CmZ Cmm

known as cofactor matrix, where (i, j)" vector is deleted.
Now adjoin of A, written as Adj A is given by
Adj A = Transpose of cofactor matrix
=

1
Al= —AdjA
Al
where Adj A is the inverse of matrix A, with condition
that [A|#0.

We can easily see
A.[Adj(A)] = [Adj(A)]A =det(A).]
A system of linear equations
allxl A a12x2 Tt alnxn - bl

a,x +a,x,*.. +ax= b

then

nl™"1 2772
follows:

xl bl

Let A= (a,) X=|x |.B=|b,
'xn bﬂ

then AX=B

= X=AB.

Theorem 1: Let A= [aij] then

(@a,c,ta,c, ... +C, =det(A)

(b) a.iCj,. + ajoﬂ oo + aanjn =Det (A).

Hint: For Self Attempt.

Theorem 2: Let A be an n X n matrix over F,
Then

A. (Adj(A)) = (Adj(A)).A =det (A)L.

Proof: Recall matrix multiplication from Unit 7.

www.neerajbooks.com
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Now
a a .o a
11 12 In
. a a e a
AAdi(A) = | T2 2
a
nl n2 nn
C
11 21 1n
cC C C
12 ‘22 n2
cC C C

By Theorem 1 we know thata C, +a,C, + ...+
a,C, =det(A),andaq,C, +a,C,+ ... +a,C =0ifi
# j. Therefore, ’ ’ ’

det(A) 0 - 0
0  det(A) - 0
AAdI(A) =| 0 0 - 0
0 0 det(A)
o _
0 1

det(A) =(0 0 .. O det(A)L

0 0 .. 1]

Theorem 3: Let the matrix equation of a system of
linear equations be

AX=B,where A=[aqJnxnX=|"|B=
X bn
Let the columns of A be C, C,,.....C . If det(A)
# 0, the given system has a unique solution, namely,
x, =D/D, ... ,x, =D /D, where
D, = det(C,, ...... C,.B.,C,..C)
= determinant of the matrix obtained from A
by replacing the ith column of B, and D =
det (A).

Now let us see what happens if B = 0. As we know
that AX = 0 has n — r linearly independent solutions,
where 7 = rank A. The following theorem tells this
condition in terms of det(A).

Theorem 4: The homogeneous system AX =0 has
a non-trivial solution if and only if. det (A) = 0.

Proof: First assume that AX = 0 has a non-trivial
solution. Suppose, if possible, that det(A) # 0. Then
Cramer’s Rule says that AX = 0 has only the trivial

DETERMINANTS / 3

solution X = 0 (because each D, = 0 in Theorem 3).
This is a contraction to our assumption. Therefore, det
(A)=0.

Conversely, if det(A) = 0. then A is not invertible.
~., the linear mapping A: V (F) - V (F) : A(X) = AX
is not invertible. ."., this mapping is not one-one.

Therefore, Ker A # 0 that is AX = 0 for some non-
zero X € V (F). Thus, AX = 0 has a non-trivial solution.

Theorem 5: Let X, X, .......... X €V (F). Then
D, CFD, ST X are linearly dependent over the field F if
and only if det (X, X,, ....... X)=0.

Proof: LetU= (X, X, ....... X ) be the n x n matrix

whose column vectors are X, X, ....... X,.Then X, X,
..... , X are linearly dependent over F if and only if there
existscalars a,, o, ....., o € Fnot all zero, such that a,,
X, o X+ +a X =0.
o
1 1
(x2
Now, U =(X ,Xz, ....... Xn)
o o

o X toX +... +ao X

Thus, X, X, ........ , X are linearly dependen"t. over
F if and only if UX = 0 for some non zero

a
1

x=|% eV @®

(0

But this happens if and only if det(U) = 0, by
Theorem 4. Thus, Theorem 6 is proved.

Theorem 5 is equivalent to the statement X, Xz’
..... X €V (F) are linearly independent if and only if
det (X, X, ... X ) # 0.
DETERMINANTS OF ORDER 2 AND 3

Determinant of order 2, and 3 are written as:

4, Gy ag
4, a4
and | @, a, ay
Ay Gy
@Gy Gy Gy
Where a; € CVi, j
Order two
4 4|
ay ay| ndnTdnd
2 3
_1 2|~ 2.2-[(-=1).3]1=4+3=7

www.neerajbooks.com
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Example:

32
2 g~ G@)-(2)(2)

=24-4=20
In the second order determinant, we directly
multiply diagonal elements.

Order three
Consider an arbitrary 3 x 3 matrix, A = (a,_j). The
determinant of A is defined as follows:

ap adp a3
A= |Gy dyp dy

a3 4z 43

a, aya,ta,asa, tasga,a;, -
T30y dy -a,a) dy-a) Ay dy,
Example:

2 3 4

5 6 7

1 -3 2

Expanding the determinant along the first row

57 6 7 6 5
=2 -3 +4

-3 2 I 2 1 =3
2(10+21)-3(12-7) + 4 (- 18 -5)
62-15-92=—-45

3.2 1
A-|0 2 =5
21 4

=3:2:4+2-(-5:(-2)+1:0"-1
-1-2-(-2)-2-0-4-3-(-5)"1
=24+20+0-(-4)-0-(-15)
=44+4+15=63
Note that there are six products, each consisting of
three elements in the matrix. Three of the products
appear with a positive sign (they preserve their sign)
and three with a negative sign (they change their sign).

PROPERTIES OF DETERMINANTS:
EVALUATION OF DETERMINANTS

(1) The value of a determinant remains unchanged
when rows and columns are interchanged.
a b ¢l la d g
d e fl=pb e h
g h il |c f i
(2) If any two successive rows or columns are

interchanged, then the determinant is
multiplied by (-1).

e.g.

a b ¢ a b ¢
d e fl=—|lg h i
g h i d e f

(3) If all the elements of one row or column of a
determinant are multiplied by the same number
(say M), the value of the new determinat is A
times the value of the given determinant

Aay b g aq b q
e.g. Aay by o=da b o
Aay by a boq

(4) If all the elements of a row or column of a
determinant are zero, the value of whole
determinant is zero.

(5) If any two rows or columns of a determinant
are identical, the value of determinant is zero.

(6) In a determinant the sum of the products of
the elements of any two row or column with
co-factors of the corresponding elements of
any other row or column is zero.

(7) If, in a determinant each element in any row
or column consists of the sum of two terms,
then the determinant can be expressed as the
sum of two determinants of the same order.

(8) If the elements of a row of column of a
determinant are added m times the
corresponding elements of another row or
column, the value of the determinant thus
obtained is equal to the value of the original
determinant.

AREA OF TRIANGLES USING
DETERMINANTS

Area of triangle whose vertices are (x, 1), (xp,
»2), (x3, y3) is given by

e.g.

A= %[xl (yz —y3)—x2 (yl —y3)+x3 (yl _yZ)]

(D)
x on ol
Now consider the determinant |x, v, 1| and
oy 1
expand
Y2 1‘ no1 nol
y; 1 vl yy 1

(expand through the columns)

=x,00, =) X0, —y) +x,(0, ) . (i)

Hence area of a triangle having vertices at (x,, y,),
(x,, y,) and (x,, y,) is given by

www.neerajbooks.com
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