

Published by:

NEERAJ PUBLICATIONS

Sales Office : 1507, 1st Floor, Nai Sarak, Delhi-110 006 *E-mail*: info@neerajignoubooks.com *Website*: www.neerajignoubooks.com

	Typesetting by:	Competent Comp	uters Printe	ed at:	Novelty Printer
Notes:	`				
		ults, please prefer the			
	a Guide Book/Referen Board/University.	ce Book published by N	IEERAJ PUBLICATI	IONSba	sed on the suggested syllabus
and up-to-date i University.	information and data e	etc. see the Ğovt. of Ind	lia Publications/tex	dbooks	he Author, but for the complete recommended by the Board/
composing and j by Human only not to buy this b	proof reading of the Bo and chances of Huma book.	ok. As all the Compost n Error could not be de	ng, Printing, Publis. enied. If any reader	hing an r is not s	en while preparing, printing, d Proof Reading, etc. are done satisfied, then he is requested
5. In case of any for the price of t		the maximum anybod	y can claim agair	ıst NE	ERAJ PUBLICATIONS is just
		n this Book, he is requ rectified Book free of c		e Publisł	ner, so that the same could be
		5	00	•	l design of the question paper.
and is prepared	and their answers gi based on the memory parks and their level o	only. However, the act	le you just the app ual Question Paper	roximat might s	e pattern of the actual paper comewhat vary in its contents,
"NĚERÅĴ PUBLI etc. is strictly n activity by an In	ICATIONS" on Website ot permitted without p dividual, Company, D	s, Web Portals, Online prior written permissio	Shopping Sites, İik on from NEERAJ P Trader or Distribut	e Amaz UBLICA or will b	J BOOKS" published by on, Flipkart, Ebay, Snapdeal, TIONS. Any such online sale e termed as ILLEGAL SALE of nders.
10. Subject to Delhi	Jurisdiction only.				
© Reserved v	with the Publisl	ners only.			
	ook or part thereof can t the written permissi		eproduced in any f	°orm (ex	cept for review or criticism)
					Delivery)
www.neerajignoubook	s.com . where you can		EERAJ IGNOU BC	OOKS af	uirement at our Website ter seeing the Details of the SS.
		ww.neerajignoubooks.c our Official website ww			e Various "Special Discount
"Cash on Delivery" set Delivery Person at the	rvice (All The Payment e time when You take t ooks Nearly within 3-	including the Price of t he Delivery of the Boo 4 days after we receive take nearly 8-9 days).	he Book & the Posta ks & they shall Pa your order and it	al Charg ss the V takes N	Shall be Sent to you Through ges etc.) are to be Paid to the alue of the Goods to us. We learly 4-5 days in the postal
	IEIERA	J PUI	BLIC	AI	NONS
\sim	(Publis)	hers of Educc			
1507		001 : 2008 Cei -, NAI SAR A			
		329, 45704411			
		-	-		ajignoubooks.com

CONTENTS

परिमाणात्मक विधियाँ (Quantitative Techniques)

Question Bank – (Previous Year Solved Question Papers)

Question Paper—June, 2019 (Solved)	1-5
Question Paper—December, 2018 (Solved)	1-3
Question Paper—June, 2018 (Solved)	1-3
Question Paper—June, 2017 (Solved)	1-4
Question Paper—June, 2016 (Solved)	1-3
Question Paper—June, 2015 (Solved)	1-3
Question Paper—June, 2014 (Solved)	1-4
Question Paper—June, 2013 (Solved)	1-3
Question Paper—June, 2012 (Solved)	1-3
Question Paper—June, 2011 (Solved)	1-6
Question Paper—December, 2010 (Solved)	1-5

S.No.

Chapterwise Reference Book

Page

अंतरक गणन विधि : विषय प्रवेश (Differential Calculus: Introduction)	
1. फलन, सीमांत और सातत्य (Functions, Limit and Continuity)	1
2. अवकलज (Derivatives)	9
3. आंशिक अवकलन (Partial Differentiation)	18
उभयान्त मान और इष्टतमीकरण (Extreme Values and Optimization)	
4. भूयिष्ठक और अल्पिष्ठक (Maxima and Minima)	23
5. अनिबाधित इष्टतमीकरण (Unconstrained Optimization)	31
6. निबाधित इष्टतमीकरण (Constrained Optimization)	35

S.No. C.	hapter P	age
समाकलन गणित और आर्थिक	प्रावैगिकी	
(Integral Calculus and Econor	nic Dynamics)	
7. समाकलन और आर्थिक प्रावैगिकी	में अनुप्रयोग	38
(Integration and Application in	Economic Dynamics)	
8. अंतर समीकरण तथा आर्थिक प्रावै (Difference Equations and Apr	गिकी में अनुप्रयोग lications in Economic Dynamics)	51
रैखिक बीजगणित एवं अर्थशास्त्र (Linear Algebra and Economi	ोय अनुप्रयोग	
9. सदिश विश्लेषण (Vector Analys	is)	59
10. रैखिक बीजगणित (Linear Algeb	ra)	67
11. आगत-निर्गत विश्लेषण (Input-O	utput Analysis)	82
12. रैखिक आयोजना (Linear Progra	mming)	90
सांख्यिकीय विधियाँ - I (Statist	ical Methods - I)	
13. आँकड़ा प्रस्तुति और वर्णनात्मक स	गोंख्यिकी (Data Presentation and Descriptive Statistics)	99
14. सहसंबंध एवं समाश्रयण विश्लेषण	(Corelation and Regression on Analysis)	114
15. प्रायिकता सिद्धांत (Probability T	heory)	124
16. प्रायिकता बंटन (Probability Dis	tribution)	135
सांख्यिकीय विधियाँ - II (Statis	tical Methods - II)	
17. न्यादर्शन सिद्धांत (Sampling The	ory)	142
18. न्यादर्शन बंटन (Sampling Distri	oution)	149
19. सांख्यिकीय अनुमिति (Statistical	Inference)	156
20. समुच्चय सिद्धांत (Set Theory)		168
21. फलन व उनका आरेखीय निरूपण	(Functions and their Graphical Representation)	183
22. समाकलन प्रविधियाँ (Integral M	ethods)	199

GUESTION PAPER

(June – 2019)

(Solved) परिमाणात्मक विश्लेषण विधियाँ समय : 3 घण्टे | । अधिकतम अंक : 100 नोट : प्रत्येक भाग से निर्देशानुसार प्रश्न हल करें। भाग-क $MR(Q_2) \Rightarrow 105 - 8Q_2 = 15$ इस भाग से कोई दो प्रश्न हल करें। $Q_2 =$ 9 $MR(Q_3) = MC =$ $75 - 12 Q_3 = 15$ प्रश्न 1. एक कीमत विभेदक एकाधिकारी तीन बाजारों $Q_{3} =$ 5. \Rightarrow में कार्य करता है, जहाँ उसके समक्ष, क्रमशः ये तीन माँग $P_1 = 63 - 24 = 39$ So वक्र हैं– 105 - 45 = 60P₂ = $P_1 = 63 - 4Q_1$ $P_3 = 75 - 30 = 45.$ $P_{2} = 105 - 5Q_{2}$ इस प्रकार एकाधिकारी के लाभ की मात्रा है– $P_3 = 75 - 6Q_3$ $TR(Q_1 + Q_2 + Q_3) - TC.$ जहाँ $Q_1 = Q_2 - Q_3 = Q$ (अर्थात कुल उत्पादन) 999 - 320उसका लागत फलन है- C = 20+15Q = 679. तीनों बाजारों में बेची गई मात्राएं Q1, Q2, Q3, वहां प्रश्न 2. (a) एक रैखिक प्रथम कोटि अवकलन समीकरण वसूली गई कीमतें तथा एकाधिकारी का कुल लाभ आकलित लिखें और सामान्य हल आकलित करें। करें। **उत्तर-संदर्भ-**देखें अध्याय-8, पृष्ठ 52, 'प्रथम क्रम उत्तर-एकाधिकारी के कुल लाभ हैं-समीकरणों के हलों का व्यवहार', 'सामान्य हल' 💧 $TR(Q_1) =$ $63Q_1 - 4Q_1^2$ (b) अवकलन समीकरण के माध्यम से हैरड-डोमर के $TR(Q_2) = 105 Q_2 - 5Q_2^2$ स्थैर्यपूर्ण संवृद्धि प्रतिमान को हल करने के सोपान निरूपित $TR(Q_3) = 75Q_3 - 6Q_3^2$ करें। कुल लागतें हैं– TC = 20 + 15 Qउत्तर-संदर्भ-देखें अध्याय-7, पृष्ठ 45, 'स्थिर वृद्धि का = $20 + 15 (Q_1 + Q_2 + Q_3)$ हैरोर-डोमर विश्लेषण' सीमान्त राजस्व यह दर्शाता है– प्रश्न 3. (a) यदि \overline{x} प्रतिदर्श औसत है, तो सिद्ध करें $MR(Q_1) = 63 - 8Q_1$ कि \overline{x} का प्रत्याशित मान $\mathbf{E}(\overline{x})$ समष्टि के औसत μ के $MR(Q_2) = 105 - 10Q_2$ MR (Q₃) = $75 - 12 Q_3$ समान होगा। अतः कुल लागत से, उत्तर-संदर्भ-देखें अध्याय-19, पृष्ठ 159, 'प्रसामान्यता MC = 15. प्राक्कल्पना के अनुसार परीक्षण प्रक्रिया' MR = MC(b) किसी लक्षण विशेष के समष्टि में अनुपात के $MR(Q_1) \Rightarrow 63 - 8Q_1 = 15.$ विषय में अवधारणा की जाँच की प्रक्रिया का वर्णन करें। $Q_1 = 6$

www.neerajbooks.com

www.neerajbooks.com

 एक महीने हाँ, इसका प्रायिग मय अंतराल में वि सित संख्या है, तो E (x) = μ और V (x) = σ² = उदाहरण–एक जीवन बीमा पॉर्लि	कता घनत्व फल फसी क्षेत्र में ह माध्य और वित माध्य और वित माध्य और वित माध्य की की कि सेयां बेचता है,	ान होता है। μ ^π ोने वाली सफ ारण दोनों μ के मक्रेता प्रति सप् पॉइसो का इस्त	रक निश्चित ज्लताओं की क बराबर है। ताह औसतन नेमाल करके	प्रश्न ma: sub इसर उत्तर	े 5. एक x <i>z</i> = 30 <i>x</i> ject to : के अभीष्ट	रैखिक प्र $x_1 + 50x_2$ $x_1 + x_2$ $x_1 + 2x$ $x_1 \ge 0$, $x_1 = 30x$, $x_1 + x_2$	$x_2 \ge 12$ $x_2 \ge 0$ $x_3 = 10$ $x_2 \ge 0$ $x_2 \ge 9$	नस्या इस त करें।	
त्र वह औसतन एक जन्म जन्म		९ पॉलिसी को	बेच पायेगा,			x_1, x_2	$2x_2 \ge 12$ $2x_2 \ge 0$		
यहाँ पर μ=3 वह कुछ पॉलिस अब माध्य के				x_1 +	$x_2 - S_1 - S_1$	$x_{1} + 50x_{2} + A_{1} = 9$ $x_{2} + A_{2} = 1$	501	$OS_2 - M$	$\mathbf{A}_1 - \mathbf{N}$
वह कुछ पॉलिर्स				x_1 +	$x_2 - S_1 - S_1$	$+\mathbf{A}_1 = 9$	501	$OS_2 - M$	$A_1 - N$
वह कुछ पॉलिर्स		प्रायिकता ज्ञात	त करेंगे,	$x_1 + x_1 + x_1 + x_1$	$x_2 - S_1$ $2x_2 - S_2$	$+ \mathbf{A}_1 = 9_2 + \mathbf{A}_2 = 1_2$	2		$A_1 - N$
वह कुछ पॉलिस अब माध्य के	साथ पॉइसो की	प्रायिकता ज्ञात C _j	न करेंगे, <u>30</u>	$x_1 + x_1 + x_1 + 50$	$\frac{\mathbf{x}_2 - \mathbf{S}_1}{2\mathbf{x}_2 - \mathbf{S}_2}$	$+A_1 = 9$ $+A_2 = 1$ 0	2 - M	- M	A ₁ – N
वह कुछ पॉलिस अब माध्य के В	साथ पॉइसो की 	प्रायिकता ज्ञात	न करेंगे, <u>30</u> _{x₁}	$x_1 + x_1 + x_1 + 50$	$\frac{\mathbf{x}_2 - \mathbf{S}_1}{2\mathbf{x}_2 - \mathbf{S}_2}$ 0 \mathbf{S}_1	$+A_1 = 9$ $A_2 + A_2 = 1$ 0 S_2	2 - M A	- M A ₂	
वह कुछ पॉलिस अब माध्य के B A ₁	साथ पॉइसो की 	प्रायिकता ज्ञात C _j <i>x</i> _B 9	त करेंगे, 30 <i>x</i> ₁ 1	$x_1 + x_1 + x_1 + 50$ x_2 1	$\begin{array}{c} \mathbf{x}_2 - \mathbf{S}_1 \\ \mathbf{y}_2 - \mathbf{S}_2 \\ 0 \\ \mathbf{S}_1 \\ -1 \end{array}$	$+ A_1 = 9$ $2 + A_2 = 1$ 0 S_2 0	2 - M A 1	$ \begin{array}{c c} -\mathbf{M} \\ A_2 \\ 0 \end{array} $	9

में कर सकते हैं– • जन्म दोष और आनुवंशिक परिवर्तन।

प्रश्न 4. एक पायजो आबंटन क्या होता है? इसके मुख्य अभिलक्षण स्पष्ट करें। किसी ऐसी समस्या का उदाहरण दे जहाँ आप पायजो आबंटन का प्रयोग कर सकते हैं।

उत्तर-संदर्भ-देखें अध्याय-16, पृष्ठ 136, 'पॉइसो बंटन',

इसे भी देखें-पॉइसो बंटन का प्रयोग निम्नलिखित समस्याओं

पॉइसो बंटन के गुणधर्म'

अभिलक्षण'

$$P = P(x \ge 0)$$

= 1-P(x₀)
= 1-4.9787 × 10⁻¹
= .95021

 $P(x_0) = \frac{e^{-3}3^0}{0!}$ = 4.9787 × 10⁻²

अतः एक और 1 से ज्यादा पालिसी की प्रायिकता

उत्तर-संदर्भ-देखें अध्याय-19, पृष्ठ 156, 'आगणकों के

www.neerajbooks.com

2 / NEERAJ : परिमाणात्मक विश्लेषण विधियाँ (JUNE-2019)

$$P(\mathbf{r}) = \frac{e^{-m}\mathbf{m}}{\mathbf{r}}$$

$$P(\mathbf{r}) = \frac{e^{-m}\mathbf{m}}{m}$$

$$P(x) = \frac{e^{-m}\mathbf{m}^x}{m}$$

$$P(x) = \frac{e^{-m}m}{m}$$

$$P(v) = \frac{e^{-m}n}{m}$$

$$P(x) = \frac{e^{-m}m}{m}$$

$$P(x) = \frac{e^{-m}n}{m}$$

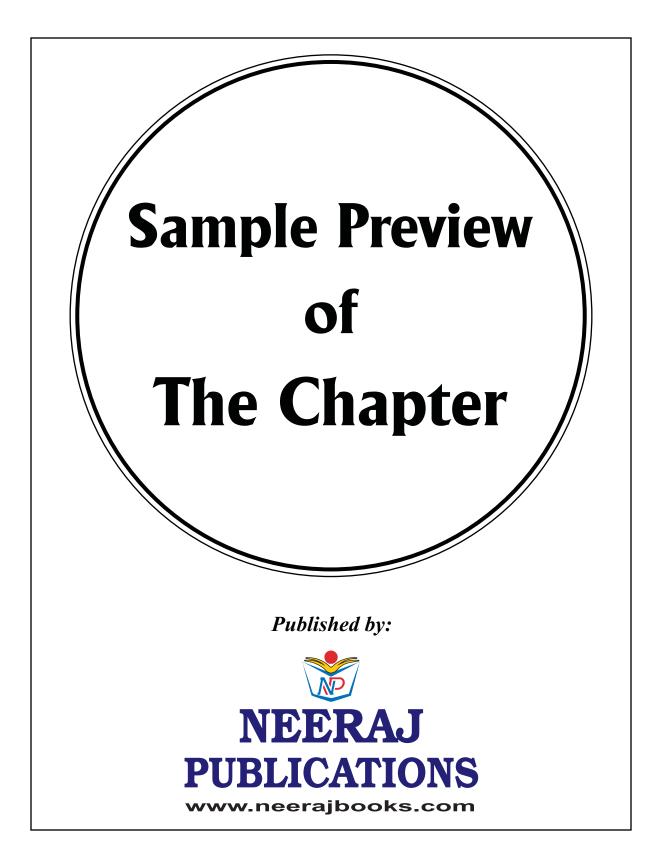
$$P(x) = \frac{e^{-x}}{x!}$$

$$P(x) = \frac{c \cdot n}{x!}$$

$$P(x) = \frac{e^{-111}}{x!}$$

$$(x) = \frac{e^{-m}\mathbf{m}^{\mathbf{x}}}{\mathbf{n}}$$

$$P(x) = \frac{e^{-m}m^x}{m}$$


$$P(x) = \frac{e^{-m}m^x}{m}$$

$$P(x > 0) = 1 - P(x_0)$$

$$\rho^{-m}$$
mř

$$P(x) = \frac{e^{-m}m^{x}}{1}$$

$$P(x) = \frac{e^{-m}m^{x}}{m}$$

परिमाणात्मक विश्लेषण विधियाँ (Quantitative Analysis Techniques)

अंतरक गणन विधि : विषय प्रवेश (DIFFERENTIAL CALCULUS: INTRODUCTION)

फलन, सीमांत और सातत्य (Functions, Limit and Continuity)

परिचय

अर्थशास्त्र से संबंधित समस्याओं को हल करने के लिए गणितीय ज्ञान एवं तकनीक ने सदैव ही महत्त्वपूर्ण भूमिका निभाई है। इस अध्याय में फलन, सीमांत और सातत्य की संकल्पनाओं के बारे में चर्चा की गयी है, किंतु अधिक गहराई में न जाकर हम इन संकल्पनाओं को वास्तविक संख्याओं एवं अनानुपातिक संख्याओं के दायरे में रखकर इन पर विचार-विमर्श करेंगे। फलन को सूत्र द्वारा, समाकलन विधि एवं ग्राफ विधि द्वारा ज्ञात किया जा सकता है। सातत्य, फलन का एक महत्त्वपूर्ण गुणधर्म होता है। किन परिस्थितियों में फलन का सीमांत सतत होता है? इत्यादि पर इस अध्याय में चर्चा की गई है।

अध्याय का विहंगावलोकन

मूल संकल्पनाओं का पुनरावलोकन

समुच्चय-स्पष्ट एवं सुपरिभाषित वस्तुओं के संकलन को समुच्चय कहते हैं तथा संकलित वस्तुएँ समुच्चय का अवयव कहलाती हैं।

उदाहरण-10 से कम सम पूर्णांकों का समुच्चय S : $\{2x \mid x \text{ एक पूर्णांक है और } 2x < 10\}$ इसके अवयव हैं → (2, 4, 6, 8)

चर-किसी भी संख्या को निरूपित करने के लिए हम चर का उपयोग करते हैं। इसे अंग्रेजी के अक्षरों द्वारा दर्शाया जाता है। जैसे x, y, a, b, आदि। चरों का मान विभिन्न परिस्थितियों में भिन्न होता है।

किसी संख्या a से <u>b</u> तक तक सभी संख्या मानों के लिए चर x को सतत चर कहते हैं। अर्थात

यदि $a \le x \le b$ या $x \notin [a, b]$ किसी चर के सभी संभव मानों का समुच्चय प्रांत होता है एवं परिसर ऐसे मानों का समुच्चय होता है, जो f(x) ले सकता है।

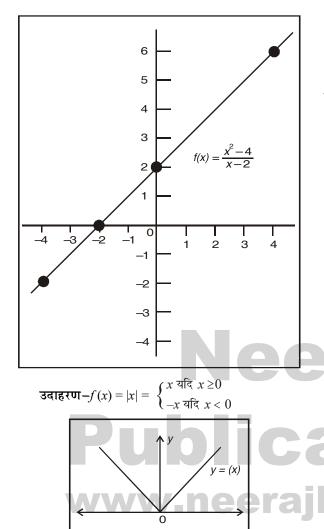
अचर-पूरी गणितीय संक्रिया के दौरान यदि कोई निरूपण एक ही संख्यात्मक मान बनाए रखता है, तो उसे अचर कहते हैं। उदाहरण के लिए |x| का मान धनात्मक और ऋणात्मक संख्या के लिए सदैव समान ही_रहता है। अर्थात

|x| = x यदि $x \ge 0$

= -x यदि x < 0

|-5|=5 और |5|=5 उदाहरण

फलन


एक दूसरी राशि y के लिए x का फलन अपने प्रांत में x के लिए एक निश्चित रूप से परिभाषित होता है। इसमें चर x स्वतंत्र चर तथा y पराश्रयी चर कहलाता है।

उदाहरण-फलन $f(x) = 20 x - 5x^2$, x के प्रत्येक मान के लिए परिभाषित है, जबकि x एक वास्तविक संख्या है अर्थात इस फलन का प्रांत वास्तविक संख्याओं का समुच्चय है।

फलन का आलेख – किसी फलन y = f(x) का आलेख बनाने के लिए, परिभाषित प्रांत x के अनुरूप y का मान ज्ञात करने की आवश्यकता होती है।

उदाहरण-फलन $f(x) = \frac{x^2 - 4}{x - 2}$ का आलेख निम्न प्रकार है–

2 / NEERAJ : परिमाणात्मक विश्लेषण विधियाँ

परिबंधित फलन व उनके परिबंधन-अंतराल (a, b) में परिभाषित किसी फलन f(x) के लिए यदि कोई शून्येतर संख्या इस प्रकार है कि

$$f(x) \le p$$

अत: p फलन का उच्च परिबंधन होता है। इसी प्रकार अन्य शून्येतर संख्या q यदि इस प्रकार है कि

$$f(x) \ge q$$

इसमें q निम्न परिबंधित होता है। दोनों प्रकार के परिबंधनों की उपस्थिति में f(x) को परिबंधित कहा जाता है।

उदाहरण–
$$f(x) = x + 5; x \notin (-1,1)$$

उच्च परिबंधन = 4
निम्न परिबंधन = 6

एकरूप फलन-एक प्रकार से घटने और बढ़ने को एकरूप फलन कहते हैं। वास्तविक संख्याओं x और y के लिए यदि $x \le y$ का फलन $f(x) \le f(y)$ है, तो फलन एकरूप कहलाता है।

फलन
$$f(x) = x - 1$$
 और $f(x) = \frac{1}{x}$ एकरूप फलन है।

प्रतिलोम फलन-यदि दो फलन f और f^{-1} इस प्रकार हैं कि $f: a \rightarrow b$, तो f^{-1} ; $b \rightarrow a$ तो f^{-1} , f का प्रतिलोम फलन कहलाता है। यदि f(x) = y, तो $f^{-1}(y) = x$, f(x) का प्रतिलोम फलन कहलाता है।

फलन के प्रकार

 बीजगणितीय फलन-वे फलन जिनमें किसी दी गयी संख्या में विभिन्न पद प्रमुख गणितीय संक्रियाओं, जैसे-जोड़, घटा, गुणा अथवा भाग को प्रयुक्त करके संलग्नित होते हैं, बीजगणितीय फलन कहलाते हैं। अचर फलन, बहुपद इत्यादि बीजगणितीय फलन होते हैं।

(i) अचर फलन–एक ही अवयव वाले परिसर का फलन अचर फलन कहलाता है।

(ii) बहुपद फलन $-a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... a_n$ के रूप वाला फलन बहुपद फलन कहलाता है। जबकि *n* एक धनात्मक वास्तविक संख्या है और $a_0, a_1, a_2 ...$ स्थिर राशि है। उदाहरण $-5x^3 - 6x^2 + 4x - 2$, बहुपद फलन है।

रेखीय फलन का आलेख एक सीधी रेखा है जबकि द्विघात फलन का आलेख परवलय होता है। बहुपद फलन आनुपातिक फलन भी होता है। आनुपातिक फलन *xy* = *a* के आलेख को आयताकार परवलय के रूप में आलेखित किया जाता है।

2. गैर-बीजगणितीय फलन-वे फलन जो बीजगणितीय नहीं होते, गैर-बीजगणितीय फलन कहलाते हैं। घातीय लघुगुणकीय एवं त्रिकोणमितीय फलन गैर-बीजगणितीय फलन के उदाहरण हैं। सीमांत की अवधारणा

फलन की सातत्यता, सीमांत की अवधारणा के द्वारा परिभाषित की जाती है। जैसे ही x, a की ओर अभिमुख होता है, फलन ƒ(x) का सीमांत l होता है। इसे निम्न प्रकार से दर्शाया गया है–

$$\lim_{x \to a} f(x) = l$$

उपर्युक्त वाक्यांश का अर्थ है कि जैसे-जैसे x एक अचर राशि a पर पहुँचता है (किन्तु x ≠ a), वैसे ही f(x) भी l राशि के समीप पहुँचता है।

उदाहरण-

 $\lim_{x \to -2} f(x) \text{ जबकि } f(x) = \begin{cases} -3x \text{ यद} x \neq -2 \\ 1 \text{ यद} x = -2 \end{cases}$ $\lim_{x \to -2} f(x) = \lim_{x \to -2} -3x$ $= -3 \lim_{x \to -2} x$ = -3 (-2) = 6

www.neerajbooks.com

www.neerajbooks.com

(a) फलन का दायाँ सीमांत—फलन के दाएँ सीमांत से तात्पर्य है कि x एक अचर राशि a के अधिक मानों से a की ओर बढता है। इसे निम्न प्रकार से दर्शाया जाता है—

 $\lim_{x \to a^+} f(x)$ अथवा $\lim_{x \to a^+0} f(x)$

(b) फलन का बायाँ सीमांत – फलन के बाएँ सीमांत से तात्पर्य है कि x एक अचर राशि a के कम मानों से a की ओर बढता है। अर्थात

$$\lim_{x \to a^-} f(x)$$
 अथवा $\lim_{x \to a^{-0}} f(x)$

फलन के सीमांत का अस्तित्व रखने के लिए फलन के दाएँ सीमांत और बाएँ सीमांत का अस्तित्व में एवं समान रूप से होना अनिवार्य है। इसका अर्थ यह है कि

$$\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$$

उदाहरण 1. ज्ञात कीजिए क्या $\lim_{x\to 0} f(x)$ अस्तित्व रखता है, यदि

$$f(x)=\frac{x}{|x|}$$

हल – यहाँ f(x), x = 0 के लिए परिभाषित नहीं है। x < 0 के लिए |x| = -x, तो

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = \frac{x}{|x|} = \frac{x}{-x} = -1$$

$$f(x) = \frac{x}{|x|} = \frac{x}{x} = 1$$

 $\Rightarrow \qquad \lim_{x \to 0^+} f(x) = +1$

यहाँ
$$\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$$

अत: यह सिद्ध होता है कि $\lim_{x\to 0} f(x)$ का अस्तित्व नहीं है।

उदाहरण 2. यदि (x) = $\begin{cases} x - [x], & \text{यद} \ x < 3 \\ 7 - 2x, & \text{यद} \ x > 3 \end{cases}$, तो ज्ञात

कीजिए कि क्या $\lim_{x \to 3} f(x)$ का अस्तित्व है अथवा नहीं।

हल-फलन का बायाँ सीमांत निकालने पर (x < 3), f(x) = x - [x]

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(x - [x])$$

= $\lim_{x \to 3^{-}} x - \lim_{x \to 3^{-}} [x]$
= $3 - 2 = 1$
फलन का दायाँ सीमांत निकालने पर ($x > 3$), $f(x) = 7 - 2x$
 $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (7 - 2x)$

अत: $\lim_{x\to 3} f(x)$ का अस्तित्व है।

(c) अनंत की ओर प्रवृत्त फलन–अनंत की ओर प्रवृत्त फलन के सीमांत को परिभाषित करने के लिए हम वास्तविक रेखा R को इस प्रकार बढ़ाते हैं कि R∪{–∞,∞}। यदि f(x) कोई वास्तविक फलन है, तो x के अनंत की ओर अभिमुख होने को निम्न प्रकार से दर्शाते हैं–

$$\lim_{x \to \infty} f(x) = L$$

केवल और केवल सभी $\varepsilon > 0$ के लिए S > 0 इस प्रकार होता है कि $|f(x) - L| \angle \varepsilon$, जबकि x < Sइसी प्रकार ऋणात्मक अनंत की और अभिमुख होने पर

$$\lim_{x \to -\infty} f(x) = \mathbf{L}$$

सभी
$$\varepsilon > 0$$
 के लिए S > 0 इस प्रकार होता है कि $f(x) - |\langle \varepsilon_{\varepsilon}, \rangle$ जबकि $x < S$

3 GIEVAL
3 GIEVAL
1
$$\lim_{x \to a} f(x) = l_1 \quad \Re x \quad \lim_{x \to a} g(x) = l_2,$$

1 $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = l_1 \pm l_2$
2 $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x). \quad \lim_{x \to a} g(x) = l_1 \cdot l_2$
3 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{l_1}{l_2} (l_2 \neq 0)$
4 $\lim_{x \to a} [c f(x)] = c. \quad \lim_{x \to a} f(x)$
5 $\cdot \Im [\varsigma h(x) = c, \quad \Im] \quad \lim_{x \to a} (x) = c$
 $\Rightarrow \lim_{x \to a} c = c$

6.
$$\lim_{x\to a} x^n = a^n$$

7.
$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$$

8.
$$\lim_{x \to 0} \sin x = 0$$

www.neerajbooks.com

फलन, सीमांत और सातत्य/3

4 / NEERAJ : परिमाणात्मक विश्लेषण विधियाँ

9.
$$\lim_{x \to 0} \cos x = 1$$

o lim

. . 1

10.
$$\lim_{x \to 0} \frac{1}{x} = 1$$

 $\sin x$

11.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

12.
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

13.
$$\lim_{x \to 0} \frac{x^n - a^n}{x - a} = na^{n-1}$$
 (जबकि $a > 0$)

(ii)

(i)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)}$$

 $\lim_{x\to 0} \frac{\sin 5x}{r} = \lim_{x\to 0}$

$$= \lim_{x \to 1} (x + 1)$$

$$= 1 + 1 = 2 \{ \because x \rightarrow \frac{\sin 5x}{5} = \lim_{x \to 0} \left(5 \times \frac{\sin 5x}{5} \right)$$

 $\rightarrow 1$

$$= 5 \times \lim_{x \to 0} \frac{\sin 5x}{5x}$$

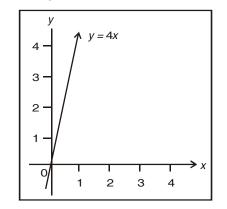
$$= 5 \times 1 = 5$$
(ii) $\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{e^{2x} - 1}{2x} .2$
Hirit $y = 2x$, and $y = 2x$.

$$= 1.2 = 2 \{ \because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \}$$

सातत्य

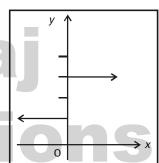
_

н


फलन f(x), बिंदु x = a पर सतत होता है, यदि (i) f(a) पूर्णत: परिभाषित हो।

(ii) $\lim_{x \to a} f(x)$ का अस्तित्व होता है।

किसी बिंदु पर सतत न होने की स्थिति में फलन को उस बिंदु पर असातत्य रखने वाला कहा जाता है। यदि f और $g_1 x =$ a पर सतत है तो $f \pm g$, fg और f/g (g(a) ≠ 0) भी x = a पर सतत होते हैं।


एक बहुपद फलन y = p(x), x के प्रत्येक बिंदु पर सतत होता है।

उदाहरण 1. y = 4x का आलेख यह प्रदर्शित करता है कि x के प्रत्येक बिन्दु पर यह फलन सतत है।

उदाहरण 2. यदि y = f(x) = 3, x > 0 } तो फलन $x = 1, x \le 0$

0 पर असातत्य है।

सतत फलनों के कुछ गुणधर्म

1. दो सतत फलनों का योग, अंतर व गुणनफल किसी भी शून्येतर संख्या के लिए एक सतत फलन होता है।

2. दो सतत फलनों का भागफल सतत होता है, बशर्ते उस बिन्दु पर हर का मान शून्य न हो।

3. यदि फलन, मुक्त अंतराल (a, b) के प्रत्येक बिंदु पर सतत है, तो फलन को सतत ही कहा जाएगा।

4. किसी अंतराल में सतत फलन, उस अंतराल के उच्च और निम्न परिबंधन प्राप्त कर लेता है।

उदाहरणतः फलन sin⁻¹ x और cos⁻¹ x, [−1,1] अंतराल में सतत है।

इसी प्रकार फलन $\sec^{-1} x$ और $\csc^{-1} x_1$ अंतराल (–∞, –1]∪ [–1, 1] में सतत हैं।

बोध-प्रुश्न

प्रश्न 1. चर व अचर के बीच अंतर सोदाहरण स्पष्ट करें।

www.neerajbooks.com