
By: B.E. (Elect); P.G.D. (O.R. & S.Q.C.)

MRP ` 350/-

Retail Sales Office:
1507, 1st Floor, Nai Sarak, Delhi - 6
Mob.: 8510009872, 8510009878

E-mail: info@neerajbooks.com
Website: www.neerajbooks.com

Based on

®

© Copyright Reserved with the Publishers only.

Typesetting by: Competent Computers , Printed at: Novelty Printing Press

Retail Sales Office : 1507, 1st Floor, Nai Sarak, Delhi-110 006
E-mail: info@neerajbooks.com | Website: www.neerajbooks.com

Disclaimer/T&C
1. For the best & up-to-date study & results, please prefer the recommended textbooks/study material only.
2. This book is just a Guide Book/Reference Book published by NEERAJ PUBLICATIONS based on the suggested syllabus by a

particular Board/University.
3. These books are prepared by the author for the help, guidance and reference of the student to get an idea of how he/she can

study easily in a short time duration. Content matter & Sample answers given in this Book may be Seen as the
Guide/Reference Material only. Neither the publisher nor the author or seller will be responsible for any damage or loss due
to any mistake, error or discrepancy as we do not claim the Accuracy of these Solutions/Answers. Any Omission or Error is
highly regretted though every care has been taken while preparing, printing, composing and proofreading of these Books. As
all the Composing, Printing, Publishing and Proof Reading, etc., are done by Human only and chances of Human Error
could not be denied. Any mistake, error or discrepancy noted may be brought to the publishers notice which shall be taken
care of in the next edition and thereafter as a good gesture by our company he/she would be provided the rectified Book free of
cost. Please consult your Teacher/Tutor or refer to the prescribed & recommended study material of the
university/board/institute/ Govt. of India Publication or notification if you have any doubts or confusions regarding any
information, data, concept, results, etc. before you appear in the exam or Prepare your Assignments before submitting to the
University/Board/Institute.

4. In case of any dispute whatsoever the maximum anybody can claim against NEERAJ PUBLICATIONS is just for the price of the
Book.

5. The number of questions in NEERAJ study materials are indicative of general scope and design of the question paper.
6. Any type of ONLINE Sale/Resale of "NEERAJ BOOKS" published by "NEERAJ PUBLICATIONS" on Websites,

Web Portals, Online Shopping Sites, like Amazon, Flipkart, Ebay, Snapdeal, etc., is strictly not permitted without prior
written permission from NEERAJ PUBLICATIONS. Any such online sale activity by an Individual, Company, Dealer,
Bookseller, Book Trader or Distributor will be termed as ILLEGAL SALE of NEERAJ BOOKS and will invite legal action
against the offenders.

7. The User agrees Not to reproduce, duplicate, copy, sell, resell or exploit for any commercial purposes, any portion of these
Books without the written permission of the publisher. This book or part thereof cannot be translated or reproduced in any
form (except for review or criticism) without the written permission of the publishers.

8. All material prewritten or custom written is intended for the sole purpose of research and exemplary purposes only. We
encourage you to use our material as a research and study aid only. Plagiarism is a crime, and we condone such behaviour.
Please use our material responsibly.

9. All matters, terms & disputes are subject to Delhi Jurisdiction only.

Get books by Post & Pay Cash on Delivery :
If you want to Buy NEERAJ BOOKS by post then please order your complete requirement at our Website
www.neerajbooks.com where you can select your Required NEERAJ BOOKS after seeing the Details of
the Course, Subject, Printed Price & the Cover-pages (Title) of NEERAJ BOOKS.
While placing your Order at our Website www.neerajbooks.com You may also avail the “Special
Discount Schemes” being offered at our Official website www.neerajbooks.com.
No need to pay in advance as you may pay “Cash on Delivery” (All The Payment including the Price of the
Book & the Postal Charges, etc.) are to be Paid to the Delivery Person at the time when You take the
Delivery of the Books & they shall Pass the Value of the Goods to us. We usually dispatch the books Nearly
within 3-4 days after we receive your order and it takes Nearly 4-5 days in the postal service to reach your
Destination (In total it take nearly 8-9 days).

Reprint Edition with Updation of Sample Question Paper Only

OBJECT ORIENTED TECHNOLOGIES
AND JAVA PROGRAMMING

S.No. Page

1. Object-oriented Methodology-1 1

2. Object-oriented Methodology-2 9

3. Java Language Basics 15

4. Expressions, Statements and Arrays 25

5. Class and Objects 32

6. Inheritance and Polymorphism 46

Question Paper—Exam Held in February-2021 (Solved) 1-13

Question Paper—June, 2019 (Solved) 1-8

Question Paper—December, 2018 (Solved) 1-7

Question Paper—June, 2018 (Solved) 1-10

Question Paper—December, 2017 (Solved) 1-8

Question Paper—June, 2017 (Solved) 1-14

Question Paper—December, 2016 (Solved) 1-7

Question Paper—June, 2016 (Solved) 1-9

Question Paper—December, 2015 (Solved) 1-10

Question Paper—June, 2015 (Solved) 1-15

Question Paper—December, 2014 (Solved) 1-14

Question Bank – (Previous Year Solved Question Papers)

Chapterwise Reference Book

7. Packages and Interfaces 56

8. Exceptions Handling 62

9. Multithreaded Programming 72

10. I/O in Java 84

11. Strings and Characters 97

12. Exploring Java I/O 108

13. Applets 126

14. Graphics and User Interfaces 134

15. Networking Features 143

16. Advance Java 153

S.No. Chapter Page

Sample Preview

of the

Solved

Sample Question

Papers

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

(Solved)

Time: 3 Hours] [Maximum Marks: 100

Note : Question No. 1 is compulsory. Attempt the three questions from the rest.

Q. 1. (a) What is Multithreading? How is
multithreading supported in Java?

Ans. Multithreading in Java is a process of ex-
ecuting multiple threads simultaneously.

A thread is a lightweight sub-process, the smallest
unit of processing. Multiprocessing and multi-
threading, both are used to achieve multitasking.

However, we use multithreading than multi-
processing because threads use a shared memory area.
They don’t allocate separate memory area so saves
memory, and context-switching between the threads
takes less time than process.

Java Multithreading is mostly used in games,
animation, etc.

Multithreading is a Java feature that allows
concurrent execution of two or more parts of a
program for maximum utilization of CPU. Each
part of such program is called a thread. So, threads
are light-weight processes within a process.

Threads can be created by using two mechan-
isms:

Extending the Thread class
Implementing the Runnable Interface

Thread creation by extending the Thread
class

We create a class that extends the java.lang.
Thread class. This class overrides the run() method
available in the Thread class. A thread begins its
life inside run() method. We create an object of
our new class and call start() method to start the
execution of a thread. Start() invokes the run()
method on the Thread object.

Thread creation by implementing the
Runnable Interface

We create a new class which implements
java.lang. Runnable interface and override run()
method. Then we instantiate a Thread object and
call start() method on this object.

(b) What is explicit casting? Explain with suit-
able example.

Ans. In Java, type casting is a method or pro-
cess that converts a data type into another data type
in both ways manually and automatically. The auto-
matic conversion is done by the compiler and manual
conversion performed by the programmer. In this
section, we will discuss type casting and its
types with proper examples.

Narrowing Type Casting

Widening Type Casting

Type Casting in Java

double long int short byte

OBJECT ORIENTED TECHNOLOGIES AND JAVA PROGRAMMING

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Type Casting
Convert a value from one data type to another

data type is known as type casting.
Types of Type Casting
There are two types of type casting:
1. Widening Type Casting
2. Narrowing Type Casting
Widening Type Casting
Converting a lower data type into a higher one is

called widening type casting. It is also known
as implicit conversion or casting down. It is done
automatically. It is safe because there is no chance to
lose data. It takes place when:

Both data types must be compatible with each
other.
The target type must be larger than the source
type.

byte -> short -> char -> int -> long -> float ->
double

For example, the conversion between numeric
data type to char or Boolean is not done automatically.
Also, the char and Boolean data types are not
compatible with each other. Let’s see an example.

WideningTypeCastingExample.java
public class WideningTypeCasting Example
{
public static void main(String[] args)
{
int x = 7;
//automatically converts the integer type into long

type
long y = x;
//automatically converts the long type into float

type
float z = y;
System.out.println (“Before conversion, int value

“+x);
System.out.println (“After conversion, long value

“+y);
System.out.println (“After conversion, float value

“+z);
}
}
Narrowing Type Casting
Converting a higher data type into a lower one is

called narrowing type casting. It is also known
as explicit conversion or casting up. It is done
manually by the programmer. If we do not perform
casting then the compiler reports a compile-time error.

double -> float -> long -> int -> char -
> short -> byte

Let’s see an example of narrowing type casting.
public class Narrowing Type Casting Example
{
public static void main (String args[])
{
double d = 166.66;
//converting double data type into long data

type
long l = (long)d;
//converting long data type into int data type
int i = (int)l;
System.out.println(“Before conversion: ”+d);
//fractional part lost
System.out.println(“After conversion into

long type: ”+l);
//fractional part lost
System.out.println (“After conversion into

int type: ”+i);
}
}
(c) What is the difference between declaring

a variable and defining a variable? Explain with
the help of an example.

Ans. When variable declaration we just men-
tion the type of the variable and it’s name, it does
not have any reference to live object. But defining
means combination of declaration and initialization.
The examples are as given below:

Declaration:
List list;
Defining:
List list = new ArrayList();
Declaration of a Variable
To declare the variable, we must specify the data

type followed by the unique name of the variable.
Syntax: The declaration of a variable generally

takes the following syntax:
dataType variable Name ;
Where dataType is a type-specifier which is any

Java data type and Variable Name is the unique name
of a variable. A variable name is an identifier, thus
all the naming conventions/rules of an identifier must
be applied for naming a variable.

Example:
public class VariableTutorial

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

1Object-oriented Methodology-1
INTRODUCTION

This chapter gives detailed description of the
different programming paradigm evolution and
development of different programming languages and
it discuss the importance of object-oriented
programming methodology. Since the invention of the
computer, many approaches of program development
have been tested. The program development approach
may be categorized as modular programming, top-down
programming, bottom-up programming, and structured
programming.

In 1980, 'C' language becomes very popular, due
to which the structured programming methodology for
the development of programs have also becomes
popular, but due to undesired performance in terms of
maintainability, reusability and reliability, structured
programming fails.

After the failures of structured programming, a new
programming methodology known as Object-oriented
Programming was developed. This approach eliminates
some of the pitfalls of conventional programming by
incorporating some of the best features of structured
programming with some powerful new concepts. This
approach speeds up the development of programs and
enhance and improves the maintenance, reusability, and
modifiability of software.

OBJECT-ORIENTED
TECHNOLOGIES

AND JAVA PROGRAMMING

So, in this chapter, we discuss what are the main
features of this approach? How it is better than other
approaches? What are the languages which support its
various features?

In this chapter, we start with the evolution of
different programming languages, and the development
of various programming paradigm so as to understand
where Object-oriented programming approach fits and
why? And, subsequently, we compares the Object-
oriented approach with the Procedure-oriented
approach. In this chapter, we also introduce some of
the basic concepts and terminologies associated with
Object-oriented (OO) approach. We also discuss some
of the common OO languages and applications of OOP
in different problem domain.

CHAPTER AT A GLANCE
PARADIGMS OF PROGRAMMING
LANGUAGES

The term paradigm according to [Wegner, 1998] is
“patterns of thought for problem solving” or it refers to
a set of techniques, methods, theories and standards that
together represent a way for solving problem.

The languages paradigms are divided into two parts:
(i) imperative and (ii) declarative paradigms. The
imperative languages can be further divided into
Procedural and object oriented approach. Declarative
languages can be classified into functional languages
and logical languages.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

2 / NEERAJ : OBJECT-ORIENTED TECHNOLOGIES AND JAVA PROGRAMMING

Language Paradigms

Imperative Paradigm

Procedural

C. Pascal

Functional

Lisp

ObjectOriented

C++, Simula,
Java

Logical

Prolog

Declarative Paradigm

Object-oriented programming is one of several
programming paradigms. Other programming
paradigms include the imperative programming
paradigm (as exemplified by languages such as Pascal
or C), the logic programming paradigm (Prolog), and
the functional programming paradigm (exemplified by
languages such as ML, Haskell or Lisp). Logic and
functional languages are said to be declarative
languages.

We use the word paradigm to mean “any example
or model.”

This usage of the word was popularized by the
science historian Thomas Kuhn. He used the term to
describe a set of theories, standards and methods that
together represent a way of organizing knowledge, a
way of viewing the world.

Thus a programming paradigm is a way of
conceptualizing what it means to perform computation
and how tasks to be carried out on a computer should
be structured and organized.

We can distinguish between two types of
programming languages: Imperative languages and
declarative languages. Imperative knowledge describes
how-to knowledge while declarative knowledge is what-
is knowledge?

A program is “declarative” if it describes what
something is like, rather than how to create it. This is
a different approach from traditional imperative
programming languages such as Fortran, and C, which
require the programmer to specify an algorithm to be
run. In short, imperative programs make the algorithm
explicit and leave the goal implicit, while declarative
programs make the goal explicit and leave the algorithm
implicit.

Imperative languages require you to write down a
step-by-step recipe specifying how something is to be
done. For example, to calculate the factorial function

in an imperative language we would write something
like:

public int factorial(int n) {
int ans=1;

for (int i = 2; i <= n; i++){
ans = ans * i;
}
return ans;

}
Here, we give a procedure (a set of steps) that when

followed will produce the answer.
Functional Programming

Functional programming is a programming
paradigm that treats computation as the evaluation of
mathematical functions. Functional programming
emphasizes the definition of functions, in contrast to
procedural programming, which emphasizes the
execution of sequential commands.

The following is the factorial function written in a
functional language called Lisp:

(defun factorial (n)
(if (<= n 1) 1 (* n (factorial

(- n 1))))
)
Notice that it defines the factorial function rather

than give the steps to calculate it. The factorial of n is
defined as 1 if n <= 1 else it is n * factorial(n - 1)
Logic Programming

Prolog (PROgramming in LOGic) is the most
widely available language in the logic programming
paradigm. It is based on the mathematical ideas of
relations and logical inference. Prolog is a declarative
language meaning that rather than describing how to
compute a solution, a program consists of a data base
of facts and logical relationships (rules) which describe
the relationships which hold for the given application.
Rather than running a program to obtain a solution, the
user asks a question. When asked a question, the run
time system searches through the data base of facts and
rules to determine (by logical deduction) the answer.

Logic programming was an attempt to make a
programming language that enabled the expression of
logic instead of carefully specified instructions on the
computer.

In the logic programming language Prolog you
supply a database of facts and rules; you can then
perform queries on the database.

This is also an example of a declarative style of
programming where we state or define what we know.

In the following example, we declare facts about
some domain. We can then query these facts–we can
ask, for example, are sally and tom siblings?

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

OBJECT-ORIENTED METHODOLOGY–1 / 3
sibling(X,Y) :- parent(Z,X), parent(Z,Y).
parent(X,Y) :- father(X,Y). parent(X,Y) :-
mother(X,Y). mother(trude, a sally).
father(tom, sally).
father(tom, erica).
father(mike, tom).
The factorial function is written in prolog as two

rules. Again, notice the declarative nature of the
program.

fac(0,1).
fac(N,F):- N > 0,

M is N - 1,
fac(M,Fm), F
is N * Fm.

To summarize:
In procedural languages, everything is a
procedure.
In functional languages, everything is a
function.
In logic programming languages, everything
is a logical expression (predicate).
In object-oriented languages, everything is an
object.

EVOLUTION OF OO METHODOLOGY
When computer system was invented, programming

was done using machine language i.e. 0 and 1. Then, to
provide convenience to the programmer, assembly
language was developed which uses mnemonic to
describe instructions to write programs. But, it was
difficult to remember too many mnemonic codes to
program in it. Another disadvantage with assembly
language is that they are machine dependent.

To overcome the difficulties of assembly language,
high-level languages were developed. High-level
programming offers much easy in writing user programs
and easy to understand than machine or assembly
languages. High-level languages provide capacity and
capability to write more complex programs easily. The
disadvantage of high-level language is that they have
limitations in reusability, flow control, difficulty due to
global variables, understanding and maintainability of
long programs.
Structured Programming

In structured programming, the complexity of
programming is handled by dividing it into small unit
called functions (subroutines, procedures, subprogram)
to make program more comprehensible. Each function

has a clearly defined purpose and defined interface to
the other functions in the program. The number of
functions are grouped together into a larger entity called
a module, but, the principle remains the same.

Structured programming helps the programmer in
writing an error free code and maintain control over
each function. This makes the development and
maintainance of the code faster and efficient.
Object-oriented Programming

Object-oriented Programming: (Oop) represents
an attempt to make programs more closely model the
way people think about and deal with the world. In the
older styles of programming, a programmer who is faced
with some problem must identify a computing task that
needs to be performed in order to solve the problem.
Programming then consists of finding a sequence of
instructions that will accomplish that task. But at the
heart of object-oriented programming, instead of tasks
we find objects entities that have behaviours, that hold
information, and that can interact with one another.
Programming consists of designing a set of objects that
model the problem at hand. Software objects in the
program can represent real or abstract entities in the
problem domain. This is supposed to make the design
of the program more natural and hence easier to get
right and easier to understand.

Important: An object-oriented programming
language such as JAVA includes a number of features
that make it very different from a standard language. In
order to make effective use of those features, you have
to “orient” your thinking correctly.
BASIC CONCEPTS OF OO APPROACH

It is claimed that the problem solving techniques
used in object-oriented programming more closely
models the way humans solve day-to-day problems.

Object-oriented techniques are popular because
experts agree that object oriented techniques are more
disciplined than structured programming techniques
[Martin and Odell 1992].

The main components of object-oriented
technology are Objects and Classes, data abstraction
and encapsulation, inheritance, and polymorphism. It
is important to understand these concepts to use OOP
method.

www.neerajbooks.com

www.neerajbooks.com

www.neerajbooks.com

Neeraj
Publications

4 / NEERAJ : OBJECT-ORIENTED TECHNOLOGIES AND JAVA PROGRAMMING
Objects

Me
tho

ds
(be

hav
iou

r) Va
riab

les
(sta

te)
In object-oriented programming we create software

objects that model real world objects. Software objects
are modeed after real-world objects in that they too have
state and behaviour. A software object maintains its state
in one or more variables. A variable is an item of data
named by an identifier. A software object implements
its behaviour with methods. A method is a function
associated with an object.

Definition: An object is a software bundle of
variables and related methods.

An object is also known as an instance. An instance
refers to a particular object. e.g. Karuna's bicycle is an
instance of a bicycle, because, it refers to a particular
bicycle. Sandile Zuma is an instance of a Student.

The variables of an object are formally known as
instance variables because they contain the state for a
particular object or instance. In a running program, there
may be many instances of an object, e.g. there may be
many Student objects. Each of these objects will have
their own instance variables and each object may have
different values stored in their instance variables. e.g.
each Student object will have a different number stored
in its Student Number variable.
Encapsulation

Object diagrams show that an object's variables
make up the center, or nucleus, of the object. Methods
surround and hide the object's nucleus from other objects
in the program. Packaging an object's variables within
the protective custody of its methods is called
encapsulation.

Encapsulating related variables and methods into
a neat software bundle is a simple yet powerful idea
that provides two benefits to software developers:

Modularity: The source code for an object
can be written and maintained independently

of the source code for other objects. Also, an
object can be easily passed around in the
system. You can give your bicycle to someone
else, and it will still work.
Information-hiding: An object has a public
interface that other objects can use to
communicate with it. The object can maintain
private information and methods that can be
changed at any time without affecting other
objects that depend on it.

Messages
Messege

Object B

Object A

Software objects interact and communicate with
each other by sending messages to each other. When
object A wants object B to perform one of B's methods,
object A sends a message to object B.

There are three parts of a message: The three
parts for the message System.out.println{“Hello
World”}; are:

The object to which the message is addressed
(System.out)
The name of the method to perform (println)
Any parameters needed by the method (“Hello
World!”)

Classes
In object-oriented software, it's possible to have

many objects of the same kind that share characteristics:
rectangles, employee records, video clips, and so on. A
class is a software blueprint for objects. A class is used
to manufacture or create objects.

The class declares the instance variables necessary
to contain the state of every object. The class would
also declare and provide implementations for the

www.neerajbooks.com

www.neerajbooks.com

	MCS-24-EM content
	1. Sample Question Paper
	pp
	june19

	2. Chapter
	cp
	1

