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Note: Answer any five questions. All computation may be done upto 3 decimal places. Use of calculators

is not allowed.

Q. 1. (a) Perform two iterations of the Birge-

Vietta method to find a root of the polynomial

Px)=2x-x?+2x-2=0.

Take the initial approximation p = 0.5.
Ans.P (x)=2x'—x*+2x-2=0

In this problem the coefficients are
a,=-2,a,=2,a,=-1,a,=2.

Let the initial approximation to P be P = .5

a,=-2 a =2 a,=-1 a,=2
b,=1.0 b =1 b,=225 b=-1.87
c,=1.0 ¢, =05 ¢=175

P, =.826087

a,=-2 a =2 a,=—1 a,=2
b,=1.0 b,=-517b,=225 b,=-.44
c,=1.0 ¢, =435 ¢,=1.50

P,=.9676

a,=-2 a =2 a,=-1 a,=2
b,=1.0 b,=-725b,=425 b,=-.06
c,=1.0 ¢, =-535¢,=3.25

So one of the root of the given equation is .9676.
(b) Solve the system of equations

4 1 1 x, 4

1 4 2| |(x,|_ |4

3 2 4] |x,| |6

using LU factorisation method.
Useu =u,=u,=1.
Anms. [A] =[L] [U]

0
=1, 1 0l ={0 uy, Uy
1

4 1 1 12 4 1
1 4 22 0 16 -11
(Ul = =
3 2 4 0 0 2
1 3 4
by =3.6L=760h=5
1 0 0]
1
[L] = Va 1 0
Yo 472 1
Now from the system
Ly =6
10 o] [»] [4
Ya 1 O |v,[_|4
Yoo 472 1| |y 6
We get
y =4
1 16
[z“]yz =4=n=y
(3 4 24
gZ+5+l}y3 =6=y =15

and from the system Ux =y

12 4 1 X, 4
0 16 11| |x,|_ 1|4
|0 0 2 X, 6
4

[12+4+1]x, =4 = X= 1

www.neerajbooks.com
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4
[16-11]x,=4 = x, = 3

2x3:6=> x, = 3.

Q. 2. (a) Use Lagrange interpolation method
to find the value of y, where x = 6, from the
following table:

x 1 2 7 8
y 4 5 5 4

Ans. Using Lagrange formula

x—x)(x—x)(x-x)

(xp —x) (%) —x,) (x5 — ;)

fx)=

(x—x) (x—x,)(x—x;)

f(xo) " (o = x9) (x; = x) (3, — x3)f(x1) MRS

x=2)(x=7)(x=38)
®O="0a-nas

x-Dx-7)(x- 8)><5
2-1)2-7@2-9)

(x—l)(x (=8
a-Da-2)7-8)

(xfl)(x 2)x=7
TE-DB-2)6- 7)

@-DE-NE-8) ,
42

S )=

N (xfl)(xf7)(fo)><5
30

N (xfl)(fo)(fo)><5
=30

N (x—l)(x—2)(x—7)x4
42

Put x = 6 then

6-2)(6-7)(6-8)
f(6) = T x4

N (671)(677)(678)><5
30

N (671)(672)(678)><5

-30
. (671)(672)(677)><4
42
6) = 4X-1x-2%x4 N S5X—1X-2x%x5
/)= 42 30
S5X4%x2x%5 S5X4x-1x4
+ + +
30 42
oo 32,50 200 80
1©)="5 30 30 42
-32%30+50x42+200%x42-80x30
f(6)=
42x30
= -960+ 2100+ 8400 — 2400
1= 1260
A ~3360+10500 7140
O by 1260 "~ 1260
1(6)=5.66.
(b) Prove that:
u6=1(A+V)
2
1
Ans. =— |E"+E"| [E"-E”
R R
1
7 (E-E)
1
=5 (1+A-1+V)
1
=5 (A+V).
(c) Solve the initial value problem
y+2x
"= 1) =2
y y+3x ¥

using third order classical Runge-Kutta
method. Find y (1.2) taking 2 = 0.2.

y+2x
vax 7 (D=2

Ans. ' =

www.neerajbooks.com
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NUMERICAL
ANALYSIS

(Solution of Non-Linear Equations in One Variable )

Review of Calculus

(INTRODUCTION )

Fundamental Theorem of Calculus

b
Iffis the derivative of F, then ff (x)dx = F(b) = F(a)

Before we prove the Fundamental Theorem of Calculus,
let’s define a few terms.
Riemann Sum

George Friedrich Bernhard Riemann (1826-1866)
was most famous for work in Non-Euclidean Geometry,
differential equations, and number theory. His results
in physics and mathematics form the basis of Einstein’s
theory of general relativity.

Let fbe defined on [a,b], and let be a partition of
[a,b] given by

a=x,<x <x,<..<x <x =b
where x, is the length of the ith sub-interval. If ¢, is any
point in the ith sub-interval then the sum f(c) x, x|
<=c,<=xis called a Riemann sum of / for the partition.

The limit as the length of the largest sub-interval
of partition (the norm of the partition, denoted)
approaches zero (if it exists) is the definite integral,
denoted.

(CHAPTER AT A GLANCE )

THREE FUNDAMENTALS THEOREMS

Three fundamental theorems, namely, Intermediate
Value Theorem, Rolle’s Theorem and Lagrange’s
Theorem.

Intermediate Value Theorem

Iffis continuous on [a,b] and k is between f{a) and
f(b) then there must be a number, ¢, in [a,b] such that
fle)=k.

The Intermediate Value Theorem can be stated in
the following equivalent form:

Suppose that I is an interval in the real numbers R
and that f: I = R is a continuous function. Then the
image set /(1) isialso an interval.

This captures an intuitive property of continuous
functions: if f{1) = 3 and f{(2) = 5, then the value of /'
must be 4 somewhere between 1 and 2. It represents the
idea that the graph of a continuous function can be drawn
without lifting your pencil from the paper.

Generalization:The Intermediate Value Theorem
can be seen as a consequence of the following two
statements from topology:

If X and Y are topological spaces, f: X =Y is
continuous, and X is connected, then f{X) is connected.
A subset of R is connected if and only if it is an interval.
A particular case of the Intermediate Value Theorem is
this:

Iffis continuous on an interval, and fis sometimes
positive and sometimes negative then fmust have a zero
in the interval, which is known as the Weierstrass
Intermediate Value Theorem, named for Karl
Weierstrass (1815-1897), a German mathematician
who is best known for his rigorous mathematical

www.neerajbooks.com
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definitions of the Extreme Value Theorem and other
results in calculus.

Example 1. Find the value of yin 0< y < ; for
1
which sin(y) = 5
. . 1.
Sol. We know that the function f{y) = sin(y) = 5 s

continuous on [o,g} . Since f(0)=0and f (gj =1, we

1
have f(0) <= <f (Ej
2 2
Thus f satisfies all the conditions of theorem.

Therefore, there are exists a point y, say »°, such that
fy)= !
y 5

That there exist a point »° such that sin ( 1°)= %
Example 2. Show that the equation 2)* +)? —y +
1 =5 has the solution in the interval [1, 2].

Sol. Let f{y) =2)*+)*—y + 1. fis the polynomial in
y. fis continuous in [1, 2].

Putthe y=1,7(1)=2x 13+ 12—1 + 1=3 and put the
valuey =2, fl2)=2 x 23+2* 2+ 1=19 and 5 lies
between f{1) and f{(2). Thus f'satisfies all the condition

of theorem. Therefore, there exists ), between 1 and

2 such that f{ y,) = 5. That is the equation 2)° + )?

—y +1=5 has solution in the interval [1, 2].
Rolle’s Theorem

Let fbe continuous on [a, b] and differentiable on
(a, b). Then f(a) =f(b) = there exists a number, ¢, in
(a, b) such that fi(c) = 0.

Proof: If fis a constant function, then f'(c)=0 for
all ¢ in (a,b), proving this case. If f{x) > fla) for some x
in (a, b) and ¢ is a maximum of f'on [a, b],(c must exist,
by the Extreme Value Theorem) then f{c) > f(x) > fla) =
Sb).

Since f{c) # f (a), and f(c) # f (b), it follows that ¢
is not an end-point of [a, b], so itis a relative maximum.

Since relative extreme occur only at critical
numbers, c is a critical number of f, which means either
f'is not differentiable at ¢ or f(c)=0.

Well, fis differentiable at ¢, so f(c) = 0, proving
this case.

Similarly if f{x) < f{a) for some x in (a, D) then let ¢
be a minimum of f'on [a, b]. This case is proved the
same as above.

How is this theorem used?

A generalisation of Rolle’s Theorem is the Mean
Value Theorem.

Example 3. Use Rolle’s theorem to show that is

2

Sol. Here, the equation cot y — y = 0. We rewrite

m
a solution of the equation cot y =y in }0’ —[ .

cos y — ysin
sin y

cos y — ysin
Solving the equation M =01in O,E
Sin y 2
is same as solving the equation cos y —y sin y = 0.
We can find a function f which satisfies the
conditions of Rolle’s Theorem and for which

f(y)=cosy—ysiny.

, V4
We can put the value y =0, f* (y)=0andf (5] .
fsatisfies all the requirements of Rolle’s theorem. There
a point y, in [a, b] such that f (y,) = cos y,

— ¥, sin y, = 0. This shows the solution equation.

Example 4. Investigate the number of roots of
each of the polynomials

Px)=x*+3x+1and ¢g(x)=x*-3x+1.

Sol. Since p'(x) =3(x*>+ 1) >0 for all x R, we see
that p has at most one root; for if it had two (or more)
roots there would be a root of p'(x) = 0 between them
by Rolle. Since p(0) = 1, while p(-1) = -3, there is at
least one root by the Intermediate Value Theorem. Hence
p has exactly one root.

We have ¢'(x) = 3(x?> —1) = 0 when x = £1. Since
q(-1)=3 and ¢(1) = -1, there is a root of ¢ between —1
and 1 by the Intermediate Value Theorem. Looking as
Xx— oo andasx — — oo shows here are three roots of g.

Example 5. Show that the equation x — ¢! =
has exactly one root in the interval (0, 1).

Sol. Our version of Rolle’s Theorem is valuable as
far as it goes, but the requirement that fla) = f(b) is
sufficiently strong that it can be quite hard to apply
sometimes. Fortunately the geometrical description of

www.neerajbooks.com
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the result—that somewhere the tangent is parallel to the
axis, does have a more general restatement.

Theorem: (The Mean Value Theorem) Let fbe
continuous on [a, b], and differentiable on (a, b). Then
there is some ¢ with a < ¢ < b such that

S)-r
f)-1e) ,z_a @) o
or equivalently £ (b) = fla) + (b —a) f(c).
B
T
a c b >

Figure: Somewhere inside a chord, the tangent to
fwill be parallel to the chord. The accurate statement of
this common-sense observation is the Mean Value
Theorem.

Proof: We apply Rolle to a suitable function; let

f(b)-f
h(x) =1 (b) —f (x) = %

Then /4 is continuous on the interval [a, b], since fis,
and in the same way, it is differentiable on the open
interval (a, b). Also, f{b) = 0 and fla) = 0. We can thus

apply Rolle’s theorem to / to deduce there is some point
¢ with a < ¢ < b such that 4#'(c) = 0. Thus we have

f(6)~f(a)

0=h(O) =)+ =, ==,

which is the required result.

(b—x).

—a

Example 6. The function f'satisfies f'(x) = PR
-x

and f{0) =2. Use the Mean Value Theorem to estimate
fQ.

Sol. We first estimate the given derivative for values
of x satisfying 0 < x < 1. Since for such x, we have
0<x?><1,andso 4 <5-x*><5. Inverting we see that

1 1
5 <flx) < 1 when 0 <x <1.

Now apply the Mean Value Theorem to f on the
interval [0, 1] to obtain some ¢ with 0 < ¢ <1 such that

REVIEW OF CALCULUS /3

A1) —£(0)=f(c). From the given value of 1 (0), we see
that 2.2 <f(1)<2.25
Example 7. The function f satisfies f'(x) =

———— and f{0) =0. Use the Mean Value Theorem
5+sin x

to estimate f'(7/2).

Sol. Note the ‘common-sense’ description of what
we have done. If the derivative doesn’t change much,
the function will behave linearly. Note also that this gives
meaning to the approximation

fa + ) =fla) + hf(a).

We now see that the accurate version of this replaces
f(a) by f'(c) for some ¢ between a and a + A.

Theorem: (The Cauchy Mean Value Theorem)
Let f and g be both continuous on [a, b] and
differentiable on (@, b). Then there is some point ¢ with
a < c¢ < b such that

g'(c) (1b) — fla)) = f(c) (g(b) — g(a)).

In particular, whenever the quotients make sense,
we have

)@ [
gb)-g(a) g(c)

Proof. Let A(x) = flx) (g(b) — g(a)) — gX)(f(b)
—fla)), and apply Rolle’s theorem exactly as we did for
the Mean Value Theorem. Note first that since both f'
and g are continuous on [a, b], and differentiable on
(a, b), it follows that 4 has these properties. Also /(a)
= fla)g(b) —g(a) fib) = h(b). Thus we may apply Rolle
to £, to deduce there is some point ¢ with a <¢ < b such
that 2'(c) = 0.

But 2'(c) = f(c)( g(b) — g(a)) — g'(c)(b) - (a))

Thus f'(c)( g(b) - g(a)) = g'()(f (b) — f(a))

This is one form of the Cauchy Mean Value
Theorem for fand g. If g'(c) # 0 for any possible c,
then the Mean Value theorem shows that g(b) — g(a)
# 0, and so we can divide the above result to get

SO f@ _ f(o)
gb)-gla) g’
giving a second form of the result.
Lagrange’s Mean Value Theorem

Let f'be continuous on [a, b] and differentiable
on (a, b).Then there exists a number, ¢, in (a, b) such
that f'(c) = (f(b) — fa)) / (b—a).

Proof: Let m = (f (b) — f(a)) / (b—a), the slope of
the secant line that passes through points (a, f{la)) and
(b, (b))

Let g(x) = fix) — m(x—a).

www.neerajbooks.com
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Then g(a) = fla) and g(b) = f(b) — (f(b) — fla))
(b-a)/(b—a) = fla),

so g(a) = g(b) = fla)

By Rolle’s Theorem, there exists a number, ¢, in
(a, b) such that g'(c¢) = 0.

g =/(x)—m,

so  flx)=g'x) +m,

so  fle)=g'(c) +m,

so  f(¢) = m, proving the theorem.

How is this theorem used?

The Mean Value Theorem is used to prove the
Fundamental Theorem of Calculus.

Example 8. Apply the mean value theorem to

the function f{y) = \[y in [0, 2] .

Sol. The function f{y) = \/; is continuous in [0, 2]
and differentiable in [0, 2].

1
fly) =—=. According to the theorem, there exists
Py

apoint y,in [0, 2] such that

F(@)=f0)=f (y,)2-0)

Now f(2) =+/2 and f (0) = 0 and f(y)= %/;— ,

1
therefore we have /2= T
Yo

1 1
N Eand(yo): 5

The line joining end-points (0, 0) and (2,~/2) of
the graph of fis parallel to the tangent to the curve at

11
the point (2’\/5)
Example 9. Consider the function f{y)= (y-1)
(»-2) (»-3) in [0, 4], Find a point y, in [0, 4] such that

_Sf@-1O
4-0
Sol. We rewrite the function fy) as
)= 0-D0-2)0-3) =y* - 6)* +11y - 6.
Also the derivative
S =3y-12y-6
Thus f satisfies all conditions of the Mean Value
Theorem. Therefore, there exists a point y in such that

S

ACRAY)

Fo0=""5

. 5 6+6
ie. 3y, —12y,+11= m:?)

ie. 3y; ~12y,+8 =0, this is quadratic equation in

6+§J§ ond 6—?/5.

Taking not equal 1.732, there are two values for y, lying
in the interval [0, 4].

¥,- The root of this equation is

Example 10. Find an approximately value 3/2¢

using the mean value theorem.
Sol. Consider the function f{y) = y'* . Then f{26)

=327

The nearest to 26 for which the cube root is known
is 27.

A27) = 327 = 3. Mean Value Theorem to the

function f{y) = y'? in the interval [26, 27] .
The function f is continuous in [26, 27] and the

1
derivatives is f{y)= 3,77 therefore , there exists a point

¥, between 26 and 27, such that

1
=327 -36 = 323 (27-26)
0

1
:g/%:%m ..(2)

1
Since y, is close to 27, we approximate 32" by
0

1 1 1

3(27)2/3 ,i.e. 3)};/3 =] E

Substituting this value in equation (2) we get

1
306 =3 — - =2.963.
27

TAYLOR’S THEOREM
We have so far explored the Mean Value Theorem,
which can be rewritten as
fa + h)=fla) + hf(c)
where c is some point between a and a + 4. [By writing
the definition of ¢ in this way, we have a statement that

www.neerajbooks.com
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