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Q. 1.  (a)  Let 
1
 = (1, 0, – 1), 

2
 = (1, 2, 1) and 

3

= (0, – 3,  2) be vectors in R3. Show that {
1
, 

2
,
 


3
} is

a basis for R3. Express (1, 0, 0) and (1, 1, 0) as linear
combinations of 

1
,
 


2
 and 

3
.

(b) Let T : R3  R3 be defined by
T (x

1
, x

2
, x

3
) = (3x

1
 + x

3
, – 2x

1
 + x

2
, – x

1
 + 2x

2

+ 4x
3
)

Sol. To  check if {(1, 0, – 1), (1, 2, 1) (0, –3, 2 )} is
linearly independent over R3.

Let a (1, 0, –1) + b (2, 3, 1)  + c (3, 1, 2) =  ( 0, 0, 0)
(a, 0, – a ) + (2b, 3b, b) + (3c, c, 2c) = (0,0,0)

a + 2b + 3c =  0 ...(i)
3b + c =  0 ...(ii)

– a + b + 2c =  0 ...(iii)
Equation (i) and (iii) adding, we get

3b + 5c =  0 (iv)
From equation (ii) and (iv), we get

c =  0
Put the value of c in equation (ii) we get

b =  0
Now putting the value of b & c in equation (i) we

get
a =  0

So that the given set {
1
, 

2
, 

3
} is a basis for R3.

Suppose S = {(1, 0, 0)  (1, 1, 0) }
[S] ={ (1, 0, 0) +   (1, 1, 0) }| , ,  R}

= { +  }. () |,   R}
Then {(1, 0, 0) and (0,1, 0) } [S]
So that (1, 0,0)  and (1, 1, 0) are two distinct bases

of R3. {(1, 0, 0), (0,1,0) (1, 0, 0)} and {(1, 0, 0)
(0, 1, 0) (0, 1, 0}

(i) Write the matrix of T with respect to the
standard basis of R3.

Sol. Given T : R3  R3.

Time: 2 hours ]  [Maximum Marks: 50
(Weightage 70%

Note: Question no. 7 is compulsory. Attempt any four questions from Questions no. 1 to 6. Use of calculators
is not allowed.

T (x
1
 x

2
 x

3
) = (3x

1
 + x

3
, – 2x

1
 + xz

j
 – x

1
 + zx

2

+ 4x
3
)

B
1

= (e
1
, e

2
 e

3
)

B
2

= {f
1
, f

2
, f

3
} are standard basis.

T(e
1
) = T (1, 0, 0)

= (3, – 2, – 1)
= 3f

1
 – zf

2
 – f

3

T(e
1
) = T (0, 1, 0)

= (0, 1, 2)
= f

2
 + 2f

3

T(e
3
) = T (0, 0, 1)

= (1, 0, 4)
= f

1
 + 4f

3

(ii)  Show that T–1 exists. Give the expression for
T–1 (x

1
, x

2
, x

3
) for T above.

Sol. T–1 (x
1
, x

2
, x

3
) = (3x

1
 + x

3
, – 2x

1
 + x

2
, – x

1
 + 2x

2

+ 4x
3
)

T–1 (e
1
) =  1

1,0,0
T

T–1 (e
1
) =  1 2 3

1

3  – 2  – f f f

T–1 (e
2
) =  1 3

1

 + 2f f

T–1 (e
2
) =  1 3

1

 + 4f f

Q. 2. (a)  Let F : R2  R1 be defined by
f(x

1
, x

2
) = 3x

1
 + 4x

2
 and T : R2  R2 be defined by

T (x
1
, x

2
) = (x

1
 – x

2
, x

1
 + x

2
).

Suppose g = f oT. What is g (2, 3) ?
Sol. f(x

1
, x

2
) = 3x

1
 + 4x

2
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T (x
1
, x

2
) = (x

1
– x

2
, x

1
 + x

2
)

g (2, 3) = f
0
T

g (2, 3) = f [T (x
1
, x

2
)]

g (2, 3) = f [x
1
 – x

2
, x

1
 + x

2
]

g (2, 3) = [3(x
1
 – x

2
) + 4(x

1
 + x

2
)]

g (2, 3) = 3x
1
 – 3x

2
 + 4x

1
 + 4x

2

g (2, 3) = 7x
1
 + x

2

g (2, 3) = 7× 2 + 3
g (2, 3) = 14 + 3
g (2, 3) = 17

(b) Let  A = 

 
 
 
  

2 1

0 1

1 1 1

a

b

(i)  Find one value each of a and b such that rank
of A is 3. Justify your answer.

Sol.  If rank of A is 3 then

A =  

2 1

0 1

1 1 1

a

b

 
 
 
  

taken value of a & b . so that

2 1

1b

 
 
 

= 0

2 – b =  0

2b 

and
1

0 1

a 
 
 

  0a 

So that value of a and b is (0, 2).
(ii) Find one value each for a and b such that

rank of A is 2. Justify your answer.
(ii) If rank of A is 2, so reduce the Given matrix is

form of rank of A is 2.

A =  

2 1

0 1

1 1 1

a

b

 
 
 
  

R
2
  R

3
 – R

2
 and R

3
 R

3 
– R

1

A =  

2 1

–1 1 1

1 1 1

a

b –

 
 
 
  

=

2 1

–1 –1 0

–1 1 0

a

b

a

 
 
 
  

So matrix is in form of Rank 2.

2 1

1 0b

 
  

= 0         and  
9 1

1 0

 
  

0 = b – 1 and  0
b = 1

So that value of  b = 1 in form of matrix A, if rank
is 2.

(c) Find the minimal polynomial of the matrix

 
 
 
  

1 –1 0

0 2 0

0 0 2

Sol. Given matrix 

1 –1 0

0 2 0

0 0 2

 
 
 
  

f
A
 (t) =

1 0

0 0

0 0

t

t

t

 
 
 
  

=
0 0 0

1 0
0 0

t t

t t

   
    

   
= t [t2 – 0] –1 [0] + 0
= t3

So Minimal polynomial can be t3.
Q. 3. (a) Find the eigen values and eigen vectors

of the matrix

A = 

  
  

  

5 6 6

1 4 2

3 6 4

Sol. Given matrix A = 

5 – 6 – 6

–1 4 2

3 – 6 – 4

 
 
 
  

Then

f
A
 (t) =

– 5 – 6 – 6

–1 – 4 2

3 – 6 4

t

t

t

 
 
 
  

= (t – 5) [(t – 4) (t + 4) + 12 ]
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1Sets, Functions and Fields

Sets
Definition: A well-defined collection of objects

(even ideas) is a set.
We mean ‘Mathematically measurble’ or

distinguishable by word ‘well-defined.’
There are two ways of  describing a set, viz.,

(1) Roster Method: Just listing elements  in
Parenthesis.

(2) Set Builder Method: Rule form.
Subsets: A set A is  said to be subset of another

set B  if every element of A is also an element of set B.
In this case, we write A  B to say that A is subset of B.
Here B is called superset of A, written as B  A.

Union of Sets: Union of two (or more) sets is the
set which contains all elements of A as well as B. It is
denoted by AB.

Intersection of Sets: Let A, B be two sets then
intersection of A and B written as AB is the set
containing common elements of A and B.

Above definitions of union and intersection can
be easily extended to three or more sets.

Empty Set: A set having no element written as 
or {} is called empty set.

Note that {0} or {} are not empty sets.
Universal Set: A set U is called universal set if it

is superset of all sets under consideration.

LINEAR
 ALGEBRA

VECTOR SPACES

Complement of a Set: Let A be a set and U, the
universal set then set U-A written as AC  or A, is
complement of set A.

Note that AC contains all elements of U which
do not belong to A.

Venn Diagrams: A universal set will be taken as a
rectangle and all other sets usually as circles, e.g.
following diagram.

Cartesian  Product of Sets
Definition: A Cartesian product A × B of the sets

A and B is the set of all possible ordered points (a, b)
where, a A and b B.

Let A, B be two sets then their cartesian product
written as A × B is given by A × B = {(x, y) ; x  A, y 
B}.

Relations
A relation R on a set S is a relationship between

elements of S, where R S × S.
Let R: A  B is a relation,
(1) If a Ra i.e., every element a  S is image of

itself, we say R is reflexive.

www.neerajbooks.com
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(2) If aRb  bRa then R is called symmetric a,
b S.

(3) If aRb and bRc  aRc then we say that R is
transitive,

 a, b, c  S.
Note that for R to be defined, S has to be non-

empty.

If R has all three properties, viz., reflexive,
symmetric and transitive, then we say that R is an
equivalence relation.

Functions
Functions are  special types of relations. Let us

denote it by f i.e., f :A  B where A is called domain
and B is co-domain of f.

Range of f is given by:

 {f (a) : a A}

Note that in function f : A B,

(1) For each and every element of A, there is some
element of B associated.

(2) For each element of A, we associate only one
element of B.

(3) Two or more elements of A could be associated
with one element of B.

Definition: A function f : A  B is a relation such
that it associates with every element of A, exactly one
element of B.

A function f : A  B is said to be one-one (or 1– 1)
or injective if each element of A are associated with
different elements of B.

A function f : A B is said to be onto (or surjective)
if the range of f is B.

If function f has both properties of 1– 1 and onto,
we call it bijective.

Composition of Functions: If f : A B   and g :
C  D are  functions and if the range of f is a subset of
C, there is a natural way of combining g and f, called go
f such that:

(go f) (x) = g[f(x)]
Similarly,

(fog) (x) = f [g(x)], if fog is defined.

Binary Operation: Let S be a non-empty set then
a binary operation is a function from S ×S to S.

Definition: A binary operation on a set S is said to
be:

(1)  Closed on subset T of S if

1 2 1 2, T , Tt t t t  

(2) Commutative if ab = ba , S.a b

(3) Associative if   (ab) c = a(bc)

, , S.a b c

We shall have further more the distributive property
for two binary operations, say + and  on R, such that

 a. (b+c) = a.b + a.c , , R .a b c

Fields
Let two binary operations + and  on a non-empty

set F be defined. If F has following 9 properties in
relation to + and, then we call it a field.

A-1: (a + b) + c = a + (b + c), , , Fa b c

(Associativity)

A-2:  an identity element, 0 such that

a + 0 = 0 + a = a Fa

(Existence of zero)

A-3: For every element of a  F,   b, written as
b = – as.t.

a + b = b + a = 0 in F.

 ( Additive Inverses)

A-4: a + b = b + a , Fa b

(Commutativity)

M-1: (a.b) c = a. (b.c)  , , F.a b c 

M-2:   e  F s.t.

a. e = e. a, F .a

e is called multiplicative identity.

M-3: For all  a  F –{0},  
1

b
a

 in F s.t

a.b = e = b.a

b is also written as a–1

M-4: a.b = b. a (Commutativity)

D-1: Distribution of over +

a.(b +c) = a.b + a.c    , , F.a b c

EXERCISE QUESTIONS

Example 1. Write the following sets by the roster
method.

A = {x | x is an integer and 10 < x < 15}
B = {x | x is an even integer and 10 < x < 15}
C = {x | x is a positive divisor of 20}
D = {p/q | p,q integers and 1   P < q  3}

www.neerajbooks.com

www.neerajbooks.com



www.neerajbooks.com

Neeraj  
Publications

SETS, FUNCTIONS AND FIELDS / 3

Sol. A = {x/x is an integer and 10 < x < 15 }

 A ={11, 12, 13, 14}

B ={x/x is an even integer and 10 < x < 15}

 B ={12, 14 }

C ={x/x is a positive divisor of 20}

 C ={1,2,4,5,10, 20}

D = / , are integers and1 3
p

p q p q
q

=
1 1 2

, ,
2 3 3

Example 2. Write the following sets by the set
builder method.

P = {7, 8, 9}; Q = {1, 2, 3, 5, 7, 11};

R = {3, 6, 9,.......}.

Sol. P = {7,8,9}

 P = {x: x N, 6 < x < 10},

Q = {1,2,3,5,7,11}

 Q = { x : x is a prime number  11}

R = {3,6,9,........}

 R = {x : x  3y, y N}.

Example 3. Which of the following statements
are true?

(a) N Z (b) Z N
(c) {0} {1, 2, 3} (d) {2, 4, 6} {2, 4, 8}

Sol. (a) N = { 1,2,3,4......}

Z = {....., –3, –2, –1, 0,1,2,3,....}

  N  Z is true.

(b) Obviously Z N is false.

(c) {0}  {1,2,3} is false.

(d) {2,4,6}  {2,4,8} is a true statement.

Example 4. Show that, if A C and B C, then
A B C.

Sol. Given A C and B C
Then prove that

A B C
Let x A x C as A C
Also x B x C as B C
 x A or x B
  x A 
  x C

 A C. Hence proved.

Example 5. For every set A, show that A =
A and A =.

Sol. For any set A, to prove that

A = A and A = 
We consider  A

= {x or x A}

= { x : x A}, as 
  = A

Next  = { x : x and x A}

= {x : x }

 A = Hence proved.

Example 6. State whether are following are true
or false.

(a) If A BÍ  and B CÍ , then A CÍ .

(b) If A  B and B  A, then A and B aree
disjoint.

(c) A  (A B)

(d) B (A B)

(e) If A B =  then A = B = .

Sol. (a) Given A B and B C then

to prove that A C or otherwise

Let x A
 x B as A B
 x C as B C.

 A C Hence, it is True

(b) GivenA B and B A

then to prove that or otherwise,

A, B are disjoint.

If x  A   x  B as  A  B

If y  B  y  A  as  B  A

 x  A  B x  A or x  B or x  B

 x  A  B

So, A, B are not disjoint.

 Given statement is false.

(c) To find true or false

Given statement.

A  (A  B)

Let x A

www.neerajbooks.com
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 x  A or x  B

 x  A  B

 A  (A  B) is true.

And hence A  A B is false.

(d) Given statement B  (A B)

Let x  B

 x  A or x B
 x  A  B

 B   A  B is true

(e) Given A  B = 
Let x  A  B

 x  A or xB
 x or x 
i.e. A  B = 
So A  B =  A = B =  is true.

Example 7. Suppose A = {a, b, c} B = {a, b, p, q}
and C = {a, p, r, s}. Find the following sets:

(a) A B, (b) B  C,

(c) (A B)  C, (d) (A C)  (B C).

Sol. Given

A = {a, b, c}

B = {a, b, p, q}

C = {a, p, r, s}

(a) A  B = {a, b, c, p, q}

(b) B  C = {a, p}

(c) (A  B)  C = {a, b, c, p, q}  {a, p, r, s}

 (A B)  C = {a, p}

(d) A  C = {a}

 B  C = {a, b}

 (A  C)  (B  C) = {a, p}.

Example 8. Why are the following statements
true?

(a) A and Ac are disjoint, i.e., A Ac = .

(b) A Ac = X, where X is the universal set.

(c) (Ac)c = A

Sol. (a) Let x  A

 x  Ac

 A  Ac = True.

(b) We know Ac = X–A

Also A  Ac = X

 x  X

 x  A or x  AC

 x  A  Ac

 A  Ac = X True.

(c) To check (Ac)c = A

 x  (Ac)c

 x Ac

 x A

 (Ac)c  A ...(1)

Next let x   A

 x   Ac

 x  (Ac)c

 A  (Ac)c ...(2)

By (1) and (2)

(Ac)c = A. Proved.

Example 9. Try and prove (AB)C ACBC

Sol. To prove that

(A B)c = Ac  Bc

Let x  (A  B)c

 x   A  B

 x  A or x  B

 x  Ac or x  Bc

 x  Ac  Bc

 (A  B)c = Ac Bc Hence proved.

Example 10. Use Venn diagrams to demonstrate
the truth of the following results. Here A, B, C are
subsets of X.

(a) (A B) CÈ Ç  = (A C) (B C)Ç È Ç

(b) (A B) CÇ È  = (A C) (B C)È Ç È
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