

Published by:		
NEERAJ PUBLICATIONS		
Sales Office : 1507, 1st Floor, Nai Sarak	Delhi-110 006	
E-mail: info@neerajbooks.com Website: www.neerajbooks.com		
Reprint Edition with Updation of Sample Guestion Paper Only	Typesetting by: Competent Computers Printed at: Novelty Printer	
Notes:		
1. For the best & up-to-date study & results, please pl 2. This book is just a Guide Book/Reference Book m	efer the recommended textbooks/study material only.	
syllabus by a particular Boord/University.		
3. The information and data etc. given in this Book are complete and up-to-date information and data etc. se Board/University.	e from the best of the data arranged by the Author, but for the e the Govt. of India Publications/textbooks recommended by the	
 Publisher is not responsible for any omission or error composing and proof reading of the Book. As all the O by Human only and chances of Human Error could r not to buy this book. 	or though every care has been taken while preparing, printing, Composing, Printing, Publishing and Proof Reading, etc. are done not be denied. If any reader is not satisfied, then he is requested	
5. In case of any dispute whatsoever the maximum for the price of the Book.	anybody can claim against NEERAJ PUBLICATIONS is just	
6. If anyone finds any mistake or error in this Book, he rectified and he would be provided the rectified Book	e is requested to inform the Publisher, so that the same could be free of cost.	
7. The number of questions in NEERAJ study materia paper.	als are indicative of general scope and design of the question	
8. Question Paper and their answers given in this Boo and is prepared based on the memory only. However distribution of marks and their level of difficulty.	ok provide you just the approximate pattern of the actual paper ; the actual Question Paper might somewhat vary in its contents,	
 Any type of ONLINE Sale/Resale of "NEE "NEERAJ PUBLICATIONS" on Websites, Web Portals etc. is strictly not permitted without prior written p activity by an Individual, Company, Dealer, Booksel of NEERAJ IGNOU BOOKS/NEERAJ BOOKS and w 	RAJ IGNOU BOOKS/NEERAJ BOOKS" published by Online Shopping Sites, like Amazon, Flipkart, Ebay, Snapdeal, ermission from NEERAJ PUBLICATIONS. Any such online sale ler, Book Trader or Distributor will be termed as ILLEGAL SALE ill invite legal action against the offenders.	
10. Subject to Delhi Jurisdiction only.		
© Reserved with the Publishers only.		
Spl. Note: This book or part thereof cannot be transla without the written permission of the pub	uted or reproduced in any form (except for review or criticism) lishers.	
Get Books by Post (1	Pay Cash on Delivery)	
If you want to Buy NEERAJ BOOKS for IGNOU Courses www.neerajbooks.com . where you can select your Required Name of the Book, Printed Price & the Cover-pages (Title)	then please order your complete requirement at our Website NEERAJ IGNOU BOOKS after seeing the Details of the Course, of NEERAJ IGNOU BOOKS.	
While placing your Order at our Website www.neerajbooks. being offered by our Company at our Official website www.	com You may also avail the Various "Special Discount Schemes" neerajbooks.com.	
We also have "Cash of Delivery" facility where there is No I "Cash on Delivery" service (All The Payment including the Delivery Person at the time when You take the Delivery of the dispatch the books Nearly within 3-4 days after we receive reach your Destination (In total it take nearly 8-9 days).	Need To Pay In Advance, the Books Shall be Sent to you Through Price of the Book & the Postal Charges etc.) are to be Paid to the e Books & they shall Pass the Value of the Goods to us. We usually your order and it takes Nearly 4-5 days in the postal service to	
NEERAJ P	UBLICATIONS	
(Publishers of E	Educational Books)	
(An ISO 9001:200 1507. 1st Floor, NAI (8 Certified Company) SARAK, DELHI - 110006	
Ph. 011-23260329. 4570	04411. 23244362. 23285501	
<i>E-mail:</i> info@neerajbooks.com	<i>Website:</i> www.neerajbooks.com	

2013113113113113113113113113113131313131				
AN	ALYTICAL GEOMETR	Y		
Question Paper—June,	2018 (Solved)	1-5		
Question Paper—June,	2017 (Solved)	1-4		
Question Paper—June,	2016 (Solved)	1-3		
Question Paper—June,	2015 (Solved)	1-2		
Question Paper—June,	2015 (Solved)	1-2		
Question Paper—June,	2014 (Solved)	1-5		
Question Paper—June,	2013 (Solved)	1-3		
Question Paper—Decen	nber, 2012 (Solved)	1-3		
Question Paper—Decen	nber, 2011 (Solved)	1-3		
Question Paper—Decen	nber, 2010 (Solved)	1-3		
S.No.	Chapter	Page		
1. Preliminaries	s in Plane Geometry			
2. The Standard	d Conics	10		
3. General Theo	ory of Conics	3		
Miscellaneou	us Exercises (Solved)	50		
THE SPHER	E, CONE AND CYLINDER			
THE SPHER 4. Preliminaries	E, CONE AND CYLINDER s in Three-Dimensional Geometry	6		
THE SPHER4. Preliminaries5. The Sphere	E, CONE AND CYLINDER s in Three-Dimensional Geometry	6		
 THE SPHER 4. Preliminaries 5. The Sphere 6. Cones and C 	E, CONE AND CYLINDER	6		

S.No.	Chapter	Page
CONICOIDS		
7. General Theo	ory of Conicoids	100
8. Central Con	icoids	112
9. Paraboloids		128
Miscellaneo	us Exercises (Solved)	137
Assignment	(Solved)	142

QUESTION PAPER

(June – 2018)

(Solved)

ANALYTICAL GEOMETRY

Time: 1½ hours]

[Maximum Marks: 25

Weightage: 70%

Note: Question no. 1 is compulsory. Attempt any *three* questions from questions no. 2 to 5. Use of calculators is not allowed.

Q. 1. Are the following statements *true* or *false?* Justify your answer with a short proof or a counter-example.

(a) The line ax + by = 0 is tangent to the conic $x^2 + y^2 + 2ax + 2by = 1$, where a and b are non-zero constants.

Ans. False: $x^2 + y^2 + 2ax + 2by = 1$ (1) ax + by = 0 (2) Comparing with equation (1) with $ax^2 + by^2 + 2bxy + 2yx$ + 2fy + c - 0 and Equation with px = ay + r = 0

Equation with
$$px = qy + r = 0$$

 $a = 1, b = 1, g = 2a, f = b, h = 0, c = 1$
 $p - a, q = b, r = 0$
Equation tangent which parallel to $ax + by = 0$ is

$$ax + by + c = 0 \text{ if only } (prh + pqg - aqx - p^2f)^2$$

= $(aq^2 - 2hpq + 6p^2) (ar^2 - 2qpr + cp)^2$
= $(a \times 0 \times 0 + a \times b \times a - 1 \times bx0 - a^2b)^2$
= $(1 \times b^2 - 0 + 6a^2) (0 - 2 \times b \times ax0 + (-1)^2 \times a)^2$
= $(a^2b - a^2b)^2 = (6a^2 + b^2) (a^2)^2$
 $0 = (6a^2 + b_2) (a^4)$
 $0 = 6a^6 + b^2$
 $0 = 6 = 4$
 $6a^6 = 0$
 $a^6 = 0$
 $b^2 = 0$
 $b = 0$].

(b) The equation $x^2 + xy + \lambda (x + y) = 0$ represents a pair of straight lines for all $\lambda \in \mathbb{R}$.

Ans. False: A pair of straigth line and through the point (α , λ)

 $ax^2 + 2hxy + by^2 = 0$ -(1) $x^2 + xy + \lambda (x + y) = 0$ -(2)Compare Equation (1) and (2) $a = 1, h = \frac{1}{2}, b = \lambda (x+1)$ $=\frac{1-\lambda(x+1)}{\frac{1}{2}}=-2\,\lambda$ a-b(c) The planes x + y - z + 1 = 0 and 3x + 3y - 3z =0 are parallel. Ans. True: x + y - z + 1 = 03x+3y3z = 0x + y - z = 1(x+y-z) = 1-x - y + z = 1 $\frac{-1}{3} = \frac{-1}{3} = \frac{1}{-3}$ parallel. (d) The xy-plane intersects the sphere $x^2 + y^2 + z^2$ -2x-2y+1=0 in a great circle. **Ans.True:** $x^2 + y^2 + z^2 - 2x - 2y + 1 = 0$ because z = 0, $x^2 + y^2 - 2x - 2y = 1$. So it is great circle. (e) The section of a paraboloid by a plane is a parabola. $ab = 1 \times -2 = -2$ Ans. False: $h^2 = 0$: $ab \neq h^2$ So $ab - h^2 = -2 - 0 = -2 < 0$: Given equation is central and can be either a hyperbola or a pair of strainght lines.

2 / NEERAJ : ANALYTICAL GEOMETRY (JUNE-2018)

Q. 2. (a) Find the points of intersection of the conics $a^2x^2 - b^2y^2 = 1$ and $b^2x^2 + a^2y^2 = 1$. Ans. $a^2x^2 - b^2y^2 = 1$ -(1) $b^2x^2 + a^2y_2 = 1$ -(2) $a^2x^2 = 1 + b^2y^2$ $\boxed{x^2 = \frac{1 + b^2y^2}{a^2}}$ We put the x^2 value in equation (2) $b^2x^2 + a^2y^2 = 1$ $b^2\left(\frac{1 + b^2y^2}{a^2}\right) + a^2y^2 = 1$ $1 - \frac{b^2}{a^2}\left(1 + b^2y^2\right) + a^2y^2 = 1$ $1 - \frac{b^2}{a^2}\left(1 + b^2y^2\right) = a^2y^2$ $\frac{b^2 + b^4y^2}{a^2} + a^2y^2 - 1$ $\frac{b^4y^2 + a^4y^2}{a^2} = 1 - \frac{b^2}{a^2}$ $y^2\left(\frac{b^4 + a^4}{a^2}\right) = 1 - \frac{b^2}{a^2}$

(b) Find the centre and radius of the sphere passing through (1, 0, 0), (0, 1, 1), (0, 0, 1) and

$$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right).$$

Ans. Given four points on a sphere, viz.,

$$A(1,0,0), B(0,1,1), C(0,0,1), D\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

Let the sphere be,
 $x^2 + y^2 + z^2 + 2ux + ex + 2vy + 2 \omega z + d = 0$ -(1)
As A, B, C, D lie on (1), so
 $1^2 + 0^2 + 0^2 + 2u + 0 + 0 + d = 0$
 $\Rightarrow 2u + d + 1 = 0$ -(2)
 $0^2 + 1^2 + 0^2 + 0 + 2v + 0 + d = 0$
 $\Rightarrow 2v + d + 1 = 0$ -(3)

$$\begin{array}{l} 0^{2} + 1^{2} + 1^{2} + 0 + 2v + 2\omega + d = 0 \\ \Rightarrow & 2v + 2\omega + d + 2 = 0 & -(4) \\ \text{and} \left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2} \\ & + \frac{2u}{\sqrt{2}} + \frac{2v}{\sqrt{2}} + \frac{2\omega}{\sqrt{2}} + d = 0 \\ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{2v}{\sqrt{2}} + \sqrt{2v} + \sqrt{2}\omega + d = 0 \\ \frac{3}{2} + \sqrt{2u} + \sqrt{2v} + \sqrt{2}\omega + \sqrt{2}\omega + d = 0 \\ 3 + 2\sqrt{2u} + 2\sqrt{2v} + 2\sqrt{2}\omega + 2d = 0 & -(5) \\ \text{Now subtracting (3) from (2) and (4) from (3)} \\ 2u - 2v = 0 \text{ and } - 2\omega - 1 = 0 \\ u = v \text{ and } \omega = \frac{1}{2} \\ \text{Putting in (5)} \\ 3 + 2\sqrt{2u} + 2\sqrt{2v} + 2\sqrt{2} \times \frac{1}{2} + 2d = 0 \\ 2d = -3 - 4\sqrt{2u} - \sqrt{2} \\ \Rightarrow d = \frac{-3 - 4\sqrt{2u} - \sqrt{2}}{2} \\ \text{Putting this in (2), we get} \\ 2u + \left(\frac{-3 - 4\sqrt{2u} - \sqrt{2}}{2}\right) + 1 = 0 \\ 2u = \left(\frac{3 + 4\sqrt{2u} + \sqrt{2} - 2}{2}\right) + 1 = 0 \\ 2u = \frac{3 + 4\sqrt{2u} + \sqrt{2} - 2}{2} \\ 4u = 3 + 4\sqrt{2u} + \sqrt{2} - 2 \\ 4u = 4\sqrt{2u} = 1 + \sqrt{2} \\ 4u (1 - \sqrt{2}) = 1 + \sqrt{2} \end{array}$$

www.neerajbooks.com

 $4u = \frac{1+\sqrt{2}}{1-\sqrt{2}}$

ANALYTICAL GEOMETRY

(CONICS) Preliminaries in Plane Geometry

Let us review two-dimensional geometry and study the polar form of a point in the plane. Then we shall study transformations of coordinate systems, viz, symmetry with respect to either coordinate axis or the origin. And then polar form of an equation.

Equation of a Line: We are familiar with distance, formula i.e., if $P(x_1, y_1)$, $Q(x_2, y_2)$ be two points in a plane then distance PQ is given by:

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Also by section formula. The distance PQ can be divided by a point R(x, y) is ratio m : n, then

$$x = \frac{mx_2 + nx_1}{m + n}$$
, $y = \frac{my_2 + ny_1}{m + n}$

We have various forms of equations of line, viz., 1. y = mx + c

- where m = slope and c = y intercept.
- 2. $y y_1 = m (x x_1)$ m = slope and (x_1, y_1) is a point on line.

3.
$$y-y_1 = \frac{(y_2-y_1)}{(x_2-x_1)}(x-x_1)$$
,

 $(x_1, y_1), (x_2, y_2)$ are two points on line.

 $4. \quad \frac{x}{a} + \frac{y}{b} = 1 ,$

a, *b* are intercepts on *x* and *y*-axis respectively.

5. $x\cos\alpha + y\sin\alpha = p$,

 α = Angle subtended to line from origin by perpendicular and p = length of that perpendicular.

 $x \cos \alpha + y \sin \alpha = p$ is the normal form of AB

6. Ax + By + C = 0 (General form) \perp Distance of line Ax + By + C

from
$$(x_1, y_1) = \left| \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right|$$

Symmetry: If F $(x_1, y_2) = 0 \Rightarrow F(-x, y) = 0$, then curve F(x, y) is called symmetrical about x-axis.

- If $F(x, y) = 0 \Rightarrow F(x, -y) = 0$ then curve F(x, y) = 0 is called symmetrical about *y*-axis.
- If $F(x, y) = 0 \Rightarrow F(-x, -y) = 0$ then curve F(x, y) = 0 is called symmetrical about origin.

2 / NEERAJ : ANALYTICAL GEOMETRY

CHANGE OF AXES

Translation: Let a point P has coordinates (x, y) in one coordinate system x - y with origin O. Another point O' has its coordinates (a, b) in this system, then we can draw x'-y' coordinate system parallel to axes of x - y system through O' and obtain new coordinates of P viz. (x', y') by:

Let a point P has (x, y) coordinates in XOY and (x', y') in X'OY' system. Drop perpendiculars PA and PB from P to OX' and OX respectively. Also draw AC \perp OX and AD \perp PB. Then x = OB, y = OB,

$$x' = OA, y' = PA$$

Also $\angle DAO =$

 $\angle DPA = \theta.$

Thus

:..

$$= OC - AD$$

x = OB

ZAOC

$$= OA\left(\frac{OC}{OA}\right) - PA\left(\frac{AD}{PA}\right)$$

 $= OA\cos\theta - PA\sin\theta$

 $x = x' \cos \theta - y' \sin \theta$

y = PB = PD + AC

...

$$= PA\left(\frac{PD}{PA}\right) + OA\left(\frac{AC}{OA}\right)$$
$$= PA\cos\theta + OA\sin\theta$$

 $y = x' \sin \theta + y' \cos \theta$

i.e.

How do you translate and rotate together? We shall see from the following example:

Let us rotate the equation $11x^2 + 2\sqrt{3}xy + 9y^2$ = 12 $(x\sqrt{3} + y + 1)$ through 30° and then translate the

system through
$$\left(\frac{1}{2}, 0\right)$$
, what do we get?
We write

and

$$x = x' \cos 30^\circ - y' \sin 30^\circ = \left(\frac{x' \sqrt{y}}{y}\right)$$
$$y = x' \sin 30^\circ - y' \cos 30^\circ = \left(\frac{x' y}{y}\right)$$

Then equation becomes

$$11\left(\frac{x'\sqrt{3}-y'}{2}\right)^{2} + 2\sqrt{3}\left(\frac{x'\sqrt{3}-y'}{2}\right)\left(\frac{x'+y'\sqrt{3}}{2}\right)$$
$$+9\left(\frac{x'y'\sqrt{3}}{2}\right)^{2} = 12\left[\sqrt{3}\frac{(x'\sqrt{3}-y')}{2} + \frac{(x'+y'\sqrt{3})}{2} + 1\right]$$
$$\Rightarrow \quad \frac{1}{4}\left[11\left(3x'^{2}+y'^{2}-2\sqrt{x'y'}\right)\right]$$
$$\quad + \frac{2\sqrt{3}}{4}\left(\sqrt{3}x'^{2}+\sqrt{3}y'^{2}-x'y'+3x'y'\right)$$
$$\quad + \frac{9}{4}\left(x'^{2}+3y'^{2}-2\sqrt{3}x'y'\right)$$

$$= \frac{12}{2} (3x' + \sqrt{3}y' + x' + \sqrt{3}y' + 2)$$

$$\Rightarrow 33x'^{2} + 11y'^{2} - 22\sqrt{3x'y'} + 6x'^{2} - 6y'^{2} + 4\sqrt{3x'y'} + 9x'^{2} + 27y'^{2} + 18\sqrt{3x'y'}$$

$$= 24 (4x' + 2)$$

$$\Rightarrow 48x'^{2} + 32y'^{2} = 2(48x' + 24)$$

$$\Rightarrow 16(3x'^{2} + 2y'^{2}) = 16(6x' + 3)$$

$$\Rightarrow 3x'^{2} - 6x' + 2y'^{2} = 3$$

$$\Rightarrow 3\left(x'^{2} - x' + \frac{1}{4}\right) + 2y'^{2} = 3 + \frac{3}{4}$$

$$\Rightarrow 3\left(x' - \frac{1}{2}\right)^{2} + 2y'^{2} = \frac{15}{4},$$

Now shifting origin to $\left(\frac{1}{2}, 0\right)$, we get

$$\Rightarrow 3x^2 + 2y^2 = \frac{15}{4}$$
, which is required equation.

Polar Coordiante: If a line OA, known as polar line (initial line) rotates through angle θ , then length OP (= OA), taken as *r* and angle θ can give (*r*, θ) where *r*, θ are both variables. This defines every point in the plane.

SOLVED EXERCISE

Q. 1. What are the coordinates of mid-point of the line segment with end points

(b) A
$$(a_1, a_2)$$
 and B (b_1, b_2) .

Sol. (*a*) Mid-point of AB, given A(5, -4), B(-3, 2)

is
$$\left(\frac{5-3}{2}, \frac{-4+2}{2}\right) = (1, -1)$$

(b) A(a_1, a_2), B(b_1, b_2)
 \therefore Mid-point of AB = $\left(\frac{a_1 + a_1}{2}, \frac{a_2 + b_2}{2}\right)$

PRELIMINARIES IN PLANE GEOMETRY / 3

Q. 2. Check if the triangle PQR, where P, Q, and R are represented by (1, 0) (-2, 3) and (1, 3), is an equilateral triangle.

Sol. Given: P(1, 0), Q(-2, 3), R(1, 3)

$$\therefore$$
 PQ = $\sqrt{(-2-1)^2 + (3-0)^2}$
 $= \sqrt{9+9}$
 \therefore PQ = $\sqrt{18} = 3\sqrt{2}$
QR = $\sqrt{(1+2)^2 + (3-3)^2}$
 $= \sqrt{9+0}$
 \therefore QR = 3
and RP = $\sqrt{(1-1)^2 + (3-0)^2}$
 $= \sqrt{9}$
 \therefore QR = 3
 \therefore QR = 3
 \therefore QR = 3
 $\Rightarrow \sqrt{9+0}$
 \therefore QR = 3
 $\Rightarrow \sqrt{9+0}$
 \therefore QR = 3
 $\Rightarrow \sqrt{9+0}$
 $\Rightarrow \sqrt{1-1}^2 + (3-0)^2$
 $= \sqrt{9}$

PQR is not an equilateral triangle.
 Q. 3. What are the equations of the coordinate

axes? Sol. Equation of *x*-axis is y = 0

and Equation of y-axis is y = 0.

Q. 4. Find the equation of the line that cuts off an intercept of 1 from the negative direction of the y-axis, and is inclined at 120° to the x-axis.

Sol. Given:
$$y =$$
 intercept on negative side,
i.e. $C = -1$
and Slope $m = \tan \theta$

= tan 120 as
$$\theta = 120^{\circ}$$
 (given)

$$m = -\sqrt{3}$$

Required line is

: Required line is,

ŀ

$$y = -\sqrt{3x} - 1$$

i.e.
$$\sqrt{3x + y + 1} = 0$$
 using $y = mx + c$

Q. 5. What is the equation of a line passing through the origin and making an angle θ with the *x*-axis?

4 / NEERAJ : ANALYTICAL GEOMETRY

Sol. Given: Line passes through origin, i.e. (0, 0) and it makes an angle θ with *x*-axis

- \therefore Its slope $m = \tan \theta$
- \therefore Equation of line by

$$y - y_1 = m(x - x_1)$$
 is

 $y-0 = \tan \theta (x-0)$

 $\Rightarrow \qquad y = x \tan \theta$

Q. 6. (a) Suppose we know that the intercept of a line on the x-axis is 2 and on the y-axis is -3. Then show that its equation is:

$$\frac{x}{2} - \frac{y}{3} = 1$$

(b) More generally, if a line L cuts off an intercept $a (\neq 0)$ on the x-axis and $b(\neq 0)$ on the y-axis, then show that its equation is:

$$\frac{x}{a} + \frac{y}{b} = 1$$

is called the intercept form of the equation of L.

 $= \frac{x-x_1}{x_2-x_1}$

 $\frac{y}{3} = \frac{x}{2} - \frac{2}{2}$

 $\frac{x}{2} - \frac{y}{3} = 1$

x-intercept = a

y-intercept = b

:. Using two point form, *viz*.

 $a, b \neq 0$ Then it passes through (a, 0) and (0, b)

, we get

 $\frac{1}{0} = \frac{x-2}{0-2}$

Sol. (*a*) Given:

- Line makes x intercept = 2 i.e. it passes through (2, 0)
- It makes y intercept = -3i.e. it passes through (0, -3)

 \Rightarrow

 \Rightarrow

 \Rightarrow

and

(b) Given:

 \therefore Using two point form, *viz.*,

$$\Rightarrow \qquad \frac{y}{b} = \frac{x}{-a} - \frac{a}{-a}$$
$$\Rightarrow \qquad \frac{x}{a} + \frac{y}{b} = 1.$$

Q. 7. Find the distance of (1, 1) from the line

which has slope -1 and intercept $\frac{1}{2}$ on the y-axis.

m = -1It cut $\frac{1}{2}$ intercept on y axis i.e.,

$$c = \frac{1}{2}$$

 \Rightarrow

 \therefore Eqn. of line is

$$y = mx + c$$
$$y = -1x + \frac{1}{2}$$
$$2y = -2x + 1$$
$$2x + 2y - 1 = 0$$

2x + 2y - 1 = 0 $\therefore \text{ Its distance from } (1, 1) \text{ is, by using,}$

$$\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

istance = $\frac{|2.1 + 2.1 - 1|}{\sqrt{2^2 + 2^2}}$
= $\frac{3}{\sqrt{8}} = \frac{3}{2\sqrt{2}} \times$

$$= \frac{3\sqrt{2}}{4}$$

Q. 8. What is the distance of:

- (a) y = mx + c from (0, 0)?
- (b) x = 5 from (1, 1)?
- (c) $x \cos \alpha + y \sin \alpha = p$ from $(\cos \alpha, \sin \alpha)$?
- (d) (0, 0) from 2x + 3y = 0?

Sol. (a) To find distance of y = mx + c from (0, 0) i.e. of mx - y + c = 0 from (0, 0)

Using distance =
$$\frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}}$$

We get,

$$=\left|\frac{m.0-0+c}{\sqrt{m^2+1}}\right|$$

 $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$, we get $\frac{y-0}{b-0} = \frac{x-a}{0-a}$