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(Solved)

DIFFERENTIAL EQUATIONS

Time: 2 hours |

| Maximum Marks : 50
(Weightage 70%)

Note:
Use of calculators is not allowed.

Question No. 1 is compulsory. Answer any four questions from the remaining Question No. 2 to 7.

Q. 1. State whether the following statements
are True or False. Justify your answer with the
help of a short proof or a counter-example.

(a) The differential equation

Letnd a’ (x dy — ydx)
x dx + = T3 a2,
yay (x2+y2)

is exact .
Ans. False
a’ (x dy —xdx)
dx+ydy= — = 5
TETOE e )
=x (4 de+y (P +y°)dy
= a’xdy—xdx
= [P +x?txldx = [a>x—xy—)’]ldy
M= x¥+x2+x
N=xy+)y'—aXx
oM
E
N
o~ Pw-a
. v
ence, "

This equation is not exact.

(b) The fundamental solutions for the
differential equation.

2
X d—{ - x@ +y=0

dx dx

are x and x /n x.
Ans. True,

2
xzd—f—x@+x =0
dx dx
@*D?>*-xD+1)y =0
Let x =&

(D, (D, —1)=D,+1)y=0
(D2-2D,+ 1)y =0

Auxiliary Equation
m-=2 +1 =0
= (m-=17 =0
= m=1,1
y =, te2)e

= y = (c, ¢, lnx)x
(c) The primitive of the partial differential

equation \/; + \/; =2x,is:

%(Zx—a)3 +d’y+b

Ans. True,
f= \/F+\/E—2x
1 1
f,,:ﬁfq:m
fi=-2
dx dy dz
L T fa —(of, v dfy)
__dp _ _dq
ftp 1
dx dy dz

1 b
2

i)

J
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( I
o _dg SR
T -2 0 Y
d — — _t + xt = x2/2
- Zr dq dx e" '“cos x
-2 0
- -c = ﬁ—xt — 2
q dx e CcoS x
JP =2x-a >
I.F. = - fide _ —x7/2
P = 2x-a)’ e =e
dz = pdx + qdy Solutions,
= dz = (2x—a)* + a* dy fe ¥ =
2x —a)’
= z= uJFOIZJ“Fb- J.(exz/2 cos x) (¢ %) dx
(d) For all real values of x, the differential - el = J.cos ¥ dx
,0'u du tuso ,
equation * 37 5 : "= s elliptic. = te ¥ =sinx+c
Ans. False,
= t= ¢ sinx+cet
, 0’u B o’u 9
ox’ oy’ - = 3 = " 2sinx +ce ?
s —uRT = 0—u xx?x (-1
IR = ye sinx ey’ = 14

It is hyperbolic not elliptic. dy i 1dy  12Inx

b
® dx*  x dx x?
Ans.

d
(e) For the IVP, Xy = f(x, ),y (x;) = ,, the

d’y ldy _12Inx
PRI 2
dx®  xdx X

uniques solution of the problem. o
IF = eJ‘;M :elnx

of
continuity of f(x, y) and 5 guarantees the

Ans. True, Property of Lipritehz Condition. =X
Q. 2. Solve the following differential
. 12 Inx
equations. yXx= .[ S— X x dx
X
dy
(a) E-'—xy =y cos x 12 Inx
= y XX = .[ . dx
dy 2 _
Ans. 2y = 2 P Let, Inx =t
ns dx 34 y e “cosx
! d
1 dy «x s = < X =dt
= 3 dx ;:e”zcosx
= w = [12¢dt
L dy -1 2
= y Eﬁny = e “cosx = xy = 6f+c
= xy =6 (lnx)*+c¢

Let yt=t

www.neerajbooks.com
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DIFFERENTIAL
EQUATIONS

(Ordinary Differential Equations of First Order)

The Nature of Differential Equations

(INTRODUCTION)

Many practical problems in science and
engineering are formulated by finding how one quantity
is related to, or depends upon, one or more quantities
defined on the problem. Often, it is easier to model a
relation between the rates of changes in the variables
rather than between the variables themselves. The study
of this relationship gives rise to differential equations.
The differential equations are used to model physical
systems.

(CHAPTER AT A GLANCE )

BASIC CONCEPTS

Definition: An equation that involves one or more
dependent variables and their derivatives with respect
to one or more independent variables is called a
differential equation.

For example:

dy
) — = 6x2
(i) ax 6x
(ii) Iy, 16y =2
i =2x
dx? 4
8z+ 0z
(iii) e xy_ay =zx

are all differential equations.
NOTE 1. Equations of the type

d dy
—(x — -
dx( y) y+x dx

are not differential equations. In this equation if
you expand the left hand side then you will find the left
hand side is the same as the right hand side. Such
equations are called identities.

NOTE 2: The equation

dy
dx) =)

is not a differential equation. This is because y is

d
evaluated at (x +1) whereas d_i}c is evaluated at x.

The classification of differential equations is based
on the nature of the dependent variables and their
derivatives in the equations. There are three types of
differential equations:

1. Ordinary Differential Equation (ODE): A
differential equation which contains derivatives with
respect to a single independent variable.

Examples:

dy

=32 +

Ir 3x 2x (D
&y, 6y =2x2 )
— =2x
dx? Y

www.neerajbooks.com
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d
y=x2+ d—ﬁ -(3)

are all ordinary differential equations.

The general representation of the ordinary
differential equation is:
dy d*y d"y
g XY= _29 _n
dx  dx dx

where g is a real valued function.

2. Partial Differential Equation (PDE): An
equation that contains two or more independent
variables and partial differential co-efficient with
reference to any of them.

Examples:

dz 0z

X—+—=-z=

ox dy

za—Z+x %—nzx
Vit wg, T =0

0’z u du

—t—t— =

o’ 9y’ 9z’

3. Total Differential Equation: Those equations
that contain two or more dependent variables together
with their derivatives with respect to a single
independent variable that may or may not exist
explicitly in the equation.

Examples:

yzdx +xzdy +xydz=0

xdx + ydy + zdz

+xdx+dy+3dz=0
J+y 42
Order of Differential Equation: The order of a
differential equation is the order of the highest
derivative appearing in it.
For example, equation
d’y dy
—5+—— =sin ..(4
dx*  dx * @)
is of second order because the highest derivatives is
2
—5, which is of second order. And the equation
dx

d
—i =3x% +6x+9 is of first order as the order of the

highest derivative is one.

Degree of a Differential Equation: The degree
of an equation is the degree of that highest derivative,
when the differential coefficients are free from radicals
and fractions. For example, the equation

dx

earlier example, degree of the equation (4) is one as
the degree of highest derivative is one.

We now classify the differential equations
depending upon the degree of dependent variable and
its derivatives into two classes, namely linear and non-
linear.

Linear and Non-linear Differential Equations:
When in a differential equation, either ordinary or
partial differential equation, the dependent variable and
its derivatives occur in the first degree only we call the
equation linear. When a differential equation is not
linear we call it non-linear.

2
d d
)’_y:\/;[d_ij +4 is of second degree. In the

2

d
Examples: The equation { +32% =54 Y isan
dx dx

ordinary linear differential equation as the degree of
dependent variable and its derivatives is one. However,

. d . . .
the equation x° d_y+ y* =1 is an ordinary non-linear
X

differential equation.
Similarly,

Equation g_z ¥ a_z = z isalinear partial differential
X oy

. Sz 9z dz
equation and the equation y"‘ay_zz gy S 2

non —linear partial differential equation.

SOLUTION OF A DIFFERENTIAL EQUATION
A function y = f (x) 1is called solution of a
differential equation on an interval I, if /(x)is continuous
and differential (required number of times) throughout
the interval and if substitution of y = f (x) and its
derivatives into the equation reduces to an identity.

d
For example, y = ce* is a solution of d_y= 2y
X

. _ > dy _ 2x .
because by putting y = ce* and o 2ce™ | the given
x

differential equation reduces to the identity
2ce* = 2ce™.

www.neerajbooks.com
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Example: Show that equation of the family of
curve y = ¢* (A cos x + B sin x), where A and B are
arbitrary constants, is the solution of the differential

d’y _dy
ti -2—+2y=0.
equation i e y
Solution: Given that
y=¢e"(Acosx+ Bsinx) (5
Differentiating (5) with respect to ‘x’, we get

d . . .
d—y= ¢ (—Asinx+ Bcosx)+ € (Acosx+ Bsinx)
x

d .
i,e_d—§= e"(=Asinx+ Bcosx)+ y, Using (5) ..(6)

Differentiating (6) again with respect to ‘x’, we get

2
d fz—e’((AcostrBsinx)
dx
+e‘”(—Asinx+Bcosx)+d—y 7
o (7
Now from (6),
e’”(—Asinx+Bsinx)—Q— 8
i y ...(8)

Hence eliminating A and B from (5), (7) and (8),
we get
2 2
d_y:_y+d_y_y+d_y or ﬂ_2ﬂ+2y:0
dx* dx dx dx? dx

which shows that y is the solution of the given
equation.

To obtain the solution of a differential equation,
we integrate it as many times as the order of the
differential equation, since each integration reduces the
order of the differential equation by one. Also, each
integration, introduces one arbitrary constant in the
solution. Accordingly, we classify various types of
solutions of an ordinary differential equation as follows:

General Solution: The solution of the nth order
differential equation that contains n arbitrary constants
is called its general solution. General solution is also
called complete integral or complete primitive of the
differential equation.

Particular Solution: Any solution obtained from
the general solution, by giving particular values to the
arbitrary constants, is called a particular solution.

For example, y= Ae* +Be ", involving two

arbitrary constants A and B, is the general solution of

THE NATURE OF DIFFERENTIAL EQUATIONS / 3

dz
the differential equation d_f = 4y whereas
X
y= &> + 7% is its particular solution (taking A = 1
and B=1).

Singular Solution: In the case of most of the
differential equations, every solution can be obtained
from the general solution by assigning suitable values
to the arbitrary constants. However, in some cases there
exists a solution which cannot be obtained from the
general solution. Such a solution is called a singular
solution.

For example, it can be verified that y = cx + ¢? is
the general solution of the differential equation

2
%)
dx

the general solution is a parameter family of
straight lines, one straight line for each value of c.
However, we find that (by substitution) 4y + x> = 0 is
also a solution of the differential equation, which cannot
be obtained from the general solution.

REMARK: Not all differential equations that we
come across have unique solution or a family of
solutions. For example, the differential equation

@ _

X =Y ...(9)

dy

—|+|y|=0

dx |y | ...(10)
has only the trivial solution, that is y = 0.
The differential equation

FZ+UHCZO ¢>0 (1)
dx

has no solution.

From the above discussion we now try to find the
conditions under which the solution of a given
differential equation exists and is unique. For that
consider the following theorem:

Theorem 1: (Existence-Uniqueness)

Let f(x, ¥) be continuous in a domain D of the (x,
y) plane and let M be a constant such that

| f(x,y)) <M in D. Let f(x, y) satisfy in D the
Lipschitz condition in y namely ...(12)

G p) = f o y) | <K, - )

...(13)

where the constant K is independent of x, y, y.:

Let the rectangle R, defined by

www.neerajbooks.com
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|x—xO|Sh, |y—yo|Sk ...(14)

lie in D, where Mh <k. Then, for |[x — x| < &, the

d
differential equation d_i:f(x’y) has a unique

solution y = y(x) for which y (x,) = .

The conditions stated in Theorem 1 are sufficient
but not necessary and can be relaxed.

Example: Investigate the existence of solution of

d
the d—i:2x2+3y2,y(0) over the rectangle

| <L|y-1|<1.
Solution: here f(x, y) = 2x* + 3y* ,x, =0 and y, =
1. The given rectangle is |x—0| < 1and|y—l| < or

—1<x<1 and 0<y<2.Now f(x, y) is continuous

everywhere in the rectangle. Further
|fCx, y) =122 +3y% < 14,
—-1<x<1, 0<y<2
Therefore, at least one solution of the IVP exists.
Now, M = 14 and
h =min{a, b/M}=min {1, 1/14}=1/14.
Solution exists for all x at least in the interval
{-1/14, 1/14}.
FAMILY OF CURVES AND DIFFERENTIAL
EQUATIONS
Let y and x be the dependent and the independent
variables respectively. The equation
fl,yc) =0 ...(15)
containing one arbitrary constant ¢, represents a
family of curves. For example, the equation x* + )2 =
72 where r is arbitrary represents a circle with centre at
the origin and radius 7. The equation
glx,y,¢,d) =0 ...(16)
containing two arbitrary constants ¢ and d also
represents a family of curves. For example, the equation
y = mx + k, where m and k are arbitrary constants
represents a two-parameter family of straight lines
having slope m and passing through the point (0, k).
To eliminate the arbitrary constant ¢ in (15), we
need two equations. One equation is given by Eq. (16)
itself and the second equation is obtained by
differentiating Eq. (15) with respect to x. On eliminating
¢ from two equations, we obtain an equation containing
x and y which is a first order differential equation.

DIFFERENTIAL EQUATIONS ARISING
FROM PHYSICAL SITUATIONS

As we know that there are many problems of
physical and engineering interest that give rise to
differential equations. For example

Example: A porous pot containing a solution of a
substance of concentration of x mgem-3 is placed in a
large vessel containing the same solution but of higher
concentration ¢ mgem-3. The concentration of the
solution in the pot will increase due to diffusion.
Assuming that ¢ is constant, the rate of increase of
concentration of the solution in the pot is proportional
to the difference in concentration. Thus it satisfies the

. . . dx . .
differential equation —~ = k(¢ —x) where k is a positive

constant.

(SOLVED EXERCISES )

Ex.1. Which of the following are differential
equations? Which of the differential equations are
ordinary and which are partial?

dy|, A s
(a) [E] +xE+y =5x+2

d X
() Ey = I sin[xy(s)lds
0

®u 0*u 0'u

—t——+——=0
© ox? * 6y2 i 07
(d) _d};gcx) =5x.p(x+1)

2 1
%) Zx—f+%+ y= {sin[xy(s)]ds

o*w

ox?

o*w _ 2

f) o

Sol.

(a) It is ODE. (By definition)

(b) It cannot be a differential equation as the right
hand side of the Eq. has an unknown function y
appearing inside an integral. Also in this case the value
of y on the right hand side of the Eq. depends on the
interval 0 to x, whereas in a differential equation, the
unknown y has to be evaluated only at x.
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