
Object Oriented
Analysis and Design

M.C.S.-219

Chapter Wise Reference Book
Including Many Solved Sample Papers

Based on

I.G.N.O.U.
& Various Central, State & Other Open Universities

NEERAJ®

MRP ` 350/-

(Publishers of Educational Books)

NEERAJ
PUBLICATIONS

Mob.: 8510009872, 8510009878 E-mail: info@neerajbooks.com

Website: www.neerajbooks.com

By: Anand Prakash Srivastava

Content

Question Paper—December-2023 (Solved) .. 3

Question Paper—June-2023 (Solved) ... 6

Question Paper—December-2022 (Solved) .. 7

 S.No. Chapterwise Reference Book Page

OBJECT ORIENTED
ANALYSIS AND DESIGN

BLOCK-1: OBJECT ORIENTED ANALYSIS AND UML

 1. Introduction to Object Oriented Modeling .. 1

 2. Structural Modeling Using UML ... 16

 3. Behavioral Modeling Using UML ... 35

 4. Advanced Behavioral Modeling Using UML ... 50

 5. Architectural Model ... 75

 BLOCK-2: MODELING

 6. Object Modeling .. 87

 7. Dynamic Modeling ... 100

 8. Functional Modeling .. 110

 BLOCK-3: OBJECT ORIENTED DESIGN

 9. Basics of System Design.. 127

 10. Object Design .. 142

 11. Advance Object Design .. 157

 BLOCK-4: IMPLEMENTATION

 12. Implementation Strategies-1 ... 170

 13. Implementation Strategies-2 ... 181

 14. Objects Mapping With Databases .. 192

 n n

 S.No. Chapterwise Reference Book Page

Sample Preview

of the

Solved

Sample Question

Papers

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

Q. 1. (a) “Object Oriented Analysis and Design is
better than Structured Analysis and Design.” Explain
in detail. Justify the above statement.

Ans. The comparison between Object-Oriented
Analysis and Design (OOAD) and Structured Analysis
and Design (SA/SD) is a topic of ongoing debate in
the field of software engineering. Both methodologies
have their strengths and weaknesses, and the
choice between them often depends on the specific
requirements, complexity, and nature of the software
project. However, in many cases, Object-Oriented
Analysis and Design is considered superior or more
advantageous compared to Structured Analysis and
Design. Let’s delve into the details and justify this
statement.

Object-Oriented Analysis and Design (OOAD):
1. Modularity and Reusability: OOAD emphasizes

modularity by organizing software components into
objects that encapsulate both data (attributes) and
behaviour (methods). This modular approach promotes
reusability, as objects can be reused in different parts
of the system or in future projects, leading to more
efficient and maintainable code.

2. Abstraction and Encapsulation: OOAD uses
abstraction to model real-world entities as objects
with simplified representations, focusing on essential
properties and behaviours. Encapsulation hides the
internal implementation details of objects, allowing
changes to be made without affecting other parts of
the system.

3. Inheritance and Polymorphism: OOAD
leverages inheritance to create hierarchical relation-
ships between classes, allowing subclasses to
inherit attributes and behaviours from superclasses.
This promotes code reuse and supports the “is-a”
relationship. Polymorphism enables objects to respond
differently to the same message, improving flexibility
and extensibility.

4. Object Modeling Techniques: OOAD employs
modeling techniques such as Unified Modeling
Language (UML) to visualize and document system
components, relationships, and interactions. UML
diagrams (e.g., class diagrams, sequence diagrams)
provide a clear and comprehensive representation of
the system’s structure and behaviour.

5. Real-World Modeling: OOAD focuses on
modeling software systems based on real-world
entities and their interactions, leading to more intuitive
and user-friendly designs. This approach facilitates
communication between stakeholders and developers,
ensuring that the software meets the intended
requirements.
Structured Analysis and Design (SA/SD):

1. Procedural Approach: SA/SD follows a
procedural or functional decomposition approach,
breaking down the system into functions or procedures
that operate on data structures. While this approach
can be effective for certain types of systems, it may
lead to complex and tightly coupled designs in larger
or more complex projects.

2. Data Flow and Process Modeling: SA/SD
emphasizes data flow diagrams (DFDs) and process
modeling to represent system processes, data flows,
and data stores. While these techniques provide a
structured way to analyze and design systems, they
may lack the flexibility and modularity of object-oriented
approaches.

3. Limited Reusability: In SA/SD, the emphasis
is more on designing algorithms and procedures
rather than reusable components. This can result in
code duplication and limited reusability, especially
when similar functionalities need to be implemented in
multiple parts of the system.

4. Less Scalable: SA/SD may face scalability
challenges when dealing with complex systems or
evolving requirements. The procedural nature of the
approach can make it harder to accommodate changes
and enhancements without impacting the entire system.

Justification for OOAD Over SA/SD:
1. Modularity and Reusability: OOAD promotes

better modularity and reusability through object-
oriented principles such as encapsulation, inheritance,
and polymorphism. This leads to more maintainable,
extensible, and scalable software designs.

2. Real-World Modeling: OOAD’s focus on real-
world modeling results in software systems that closely
align with users’ mental models and requirements,
improving usability and user satisfaction.

M.C.S.-219

December – 2023
QUESTION PAPER

(Solved)

OBJECT ORIENTED
ANALYSIS AND DESIGN

Time: 3 Hours] [Maximum Marks : 100

Note: (i) Question No. 1 is compulsory. (ii) Attempt any three questions from the rest.

Q. 1. (a) An online admission system of a
University provides facility to its prospective learner
to apply for various UG and PG courses. During the
application process applicants need to provide their
basic details such as name, date of birth, mobile
number, email-id and address. Also they need to
upload their certificates for which system provides
proper instructions and interfaces. Subsequent
upon processing the applications received,
university displays the list of selected candidates
and also send them email regarding their selection.
Applicants pay the fee online and their id cards are
generated. Draw the following diagrams for this
system. (You can make necessary assumptions, if
required):

(i) Use case diagram
Ans.

(ii) Class diagram
Ans.

(iii) Sequence diagram
Ans.

M.C.S.-219

June – 2023
QUESTION PAPER

(Solved)

OBJECT ORIENTED
ANALYSIS AND DESIGN

Time: 3 Hours] [Maximum Marks : 100

Note: (i) Question No. 1 is compulsory. (ii) Attempt any three questions from the rest.

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

NEERAJ
PUBLICATIONS

OBJECT ORIENTED
ANALYSIS AND DESIGN

INTRODUCTION
A method for creating software systems employing

concepts from object-oriented software engineering is
called object-oriented analysis and design (OOAD).
OOAD emphasises having numerous possibilities.
There may be more than one right answer to a problem;
there is never just one. The more options you have, the
more likely you are to discover an effective solution for
any issue. Your system must comply with requirements
in order to function properly. The first technical phase
in creating a software system using the object-oriented
methodology is called object-oriented analysis, or OOA.
Based on a set of fundamental ideas, OOA models the
issue domain, represents behaviour, and describes
system operations. The model produced with OOA is
converted into an object-oriented design (OOD) model,
which serves as a blueprint for software development.
The 1980s saw the emergence of object-oriented
design and analysis techniques, while the 1990s saw
the emergence of object-oriented analysis techniques.
Creating graphical user interfaces (GUIs) and a few
other applications were the main early uses of object
orientation. “One should model software systems as
collections of cooperating objects, treating individual
objects as instances of a class within a hierarchy of
classes,” is a fundamental OOAD principle.

CHAPTER AT A GLANCE
INTRODUCTION TO OBJECT ORIENTATION

The Object Modeling Technique (OMT) for
software modeling and designing emerged as the most
common OOAD approach after the concept of OOAD
was introduced in the 1980s and early 1990s.

In 1991, James Rambaugh made the suggestion.
For software modeling, he has advised using three
different sorts of models: object, dynamic, and
functional.

Another strategy was the Grady Booch-proposed
Booch methodology of Object-Oriented Analysis and
Design.

The OOAD methodology follows a progressive
process. In the analysis phase, the system
requirements are established, and domain analysis
is done from the viewpoint of the customer. After the
analytical stage is over, the iterative design step links
the logic design to the physical design. The prototype is
built and put to the test. It is a strategy that is frequently
employed in Object-Oriented Software Engineering.
Ivar Jacobson introduced a popular method for Object-
Oriented Software Engineering in 1992. Use case
diagrams were used in design for the first time as part
of an object-oriented design process. Requirements
collection, analysis, design, implementation, and
testing are among the aspects of his technique.
Additionally, he invented state transition diagrams to
show how an object’s state changes during execution
and interaction diagrams to show how operations are
performed in real-time. In the area of object-oriented
software engineering, they are the pioneers.

Object-Oriented Modeling and Design: It
consists of the linked, but separate phases of analysis
and design. Identifying requirements and creating an
object model for the application domain are the first
steps in the OOAD process; during analysis, software
specifications are created. In this stage, multiple models
are used in an effort to grasp the issue by examining
concepts from the outside world.

The next phase is OOD, where the object is a
crucial construct. A class instance, or object, also has
a data structure in addition to its behavioural traits.
Objects can interact with one another to create a
variety of programmes and applications.

Object Oriented Modeling is divided into
various stages: The system’s OOM goes through the
following stages:

Introduction to Object Oriented Modeling 1

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS

2 / NEERAJ : OBJECT ORIENTED ANALYSIS AND DESIGN

zz System requirement analysis,
zz System design,
zz Detailed design with an emphasis on system

objects, and
zz Model implementation.

The design approach for an object-oriented
development model is shown in Figure 1.

Object Model

Requirements Analysis

Dynamic
Model

Functional
Model

Design

• Architecture
Design

• Object Design

Coding in any
Object Oriented
Programming

Language

Fig. 1: Object Oriented Development Model
System Analysis: The analyst creates a problem

statement and a system model to simulate real-
world scenarios. This phase reveals the situation’s
essentials. The analysis model is a clear, precise
abstraction and consensus on “how the desired system
must be developed”. The goal is to give a model that
application specialists, whether programmers or not,
can understand and criticise. This phase defines all
system needs and properties. This step aims to create
a model that novice and expert users can understand.

System Design: This step designs the system
architecture. The system analysis model and suggested
architecture divide the system into subsystems during
system design. This phase defines and designs the
system’s architecture using the analytical model. The
analytical model and system architecture divide large,
complicated systems into discrete subsystems.

Object Design: Based on the analytical model
from before, a design model is created. The object
design uses the analysis model’s implementation
details to choose data structures and algorithms for
each class.

Following are the steps involved in object design:
zz The identification and completion of operations

and procedures carried out on distinct classes.
zz The reasoning needed to carry out the method

is chosen.
zz All data retrieval routes have been optimised.
zz For all the allowed external interference, a list

is created.
zz In order to increase the inheritance properties

across classes, classes and the operations
related with them are moved around or modified.

zz All relevant classes are packaged in a single
module.

Implementation: Using any programming
language, classes and relationships defined during
object design are finalised. This phase implements
database and hardware (if needed). Implementation
requires software engineering. This creates an
adaptable system.

Object Modeling Technique (OMT): Three
different types of models are used throughout
object-oriented modeling to cover the entire system
description:

zz Object model,
zz Dynamic model, and
zz Function model.

The items in the system and their connections
with one another are described using object models.
The dynamic model defines how things interact with
one another and how information moves through the
system. A functional model explains how the system
transforms data. All three types can be used at any
stage of development. These models are in charge
of gathering system development implementation
specifics.

Let’s compare object-oriented development to
structured system development before discussing
object-oriented modeling.

Unlike the structured approach, the object-oriented
approach identifies application domain objects and
associate’s procedures (methods) around them.

Object-oriented development takes a holistic
perspective of the application domain and identifies
objects in the problem domain, making it indirect
system development. The application’s history
helps understand its situations and traits. Object-
oriented programming benefits from considering the
problem domain as a whole rather than its functional
requirements. During problem-solving, objects pass
messages.

Object Modeling: Each object has certain
characteristics and behaviours. Typical examples of
objects include things like a car, a student, a book, a
teacher, an employee, etc. We can carry out a wide
range of operations on the object, such as classifying,
describing, organising, combining, and manipulating it.
Class diagrams and object diagrams can be used to
graphically depict the object model.

Dynamic Modeling: It is focused on Time, States,
and Transition between States. Events that cause the
transition, immediate actions that took place after the
event.

Functional Modeling: Information is transformed
and processed in functional modeling. The data flow
from one operation to another is depicted by it. Data
Flow Diagrams (DFDs) aid in the design of the entire

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS

INTRODUCTION TO OBJECT ORIENTED MODELING / 3

system. Entities, Data Store, Processes or Operations,
File Store, and Data Flow make up the bulk of the DFD.
BASIC PHILOSOPHY OF OBJECT
ORIENTATION

The attributes of object-oriented technology are
numerous. Let’s now talk about the fundamental traits
of object-oriented systems.

Sharing of Structure and Behaviour: Object-
oriented methods encourage multi-level sharing,
which makes them popular. Object-oriented languages
benefit from inheritance because it allows code reuse.

Inheritance of data structure and behaviour allows
a base class to be used to construct several subclasses
based on its basic traits and develop new classes with
less effort.

Object-oriented development promotes application
information sharing and reuse and provides a
foundation for project enhancement. New features
can be added as extensions of fundamental features
as needed. Inheritance does this without large code
changes. Object orientation does not guarantee
reusability and improvement. General system design
ensures reusability and enhancement. If the system is
understood and its aspects explored, this design can
be created.

Emphasis on Object Structure, not on Operation
Implementation: Object-orientation emphasises
specifying rather than implementing object features.
The application and development modifications deter-
mine an object’s usage. Object features are more
stable than their uses as requirements grow. Object-
structured software is more secure.

The object-oriented approach should focus on the
system’s objects’ core qualities rather than its process
structure. This process contemplates “what an object is
and its role in the system.”

OOAD creates great software. In truth, OOAD lets
programmers and customers develop well-designed
applications.
PRINCIPLES OF OBJECT ORIENTATION

The OOAD process makes use of OO principles.
These guidelines give software more adaptability,
maintainability, and extensibility. Additionally, OOAD
applications of these ideas offer reusable design. We
shall examine OO fundamentals in this part.
Abstraction

Object-oriented systems rely on abstraction.
Abstraction emphasises a system object’s core
qualities. It does not reflect system accidentals.
Abstraction helps system developers decide what
an object should perform before implementing it.
Avoiding intermediary commitments in problem-
solving through abstraction prolongs decision-making
freedom. Contemporary languages abstract data. The
abstraction gives system developers more freedom

to employ inheritance and polymorphism. Abstraction
analysis requires application-domain notions. You can
design and implement afterwards.

Abstraction is everywhere, but we don’t think
of it that way. One popular mobile phone interaction
example. Open an app and hit a button to call. You’re
doing a straightforward operation, yet a lot is happening
that you don’t need to know as a user. OOM uses that
abstraction.
Encapsulation

Encapsulation hides data we don’t want users
to see and shows data we do. It separates an
object’s exterior from its interior implementation.
It conceals object properties. Encapsulation hides
internal implementation aspects that don’t affect the
outside world. Data structure and behaviour can be
encapsulated. Encapsulation improves systems.
Encapsulation helps update an object’s implementation
without changing its appearance.
Inheritance

Object-oriented development uses code inheritance.
We group comparable classes during modeling to
enforce code reuse.

Generalisation, specialisation, and inheritance are
interconnected.

Inheritance uses class generalisation to share
properties and operations. In inheritance, generalisation
and specialisation are two sides of the same coin. A
superclass appears like a generalised version of a
subclass, and vice versa.

Use inheritance instead of IS-A when one object
acts like another. Subclasses can override superclass
features by specifying them with the same name.
Overriding features refine and replace superclass
features.

Let’s now examine the diagram shown in Figure
2. In this diagram, the Shape class is the parent of the
Circle, Triangle, and Square classes. Since just one
class is inherited from in this instance, it is a single
inheritance case.

Draw()
Erase()

Shape

Circle Triangle Square

Fig. 2: Single inheritance
In figure 3, multiple inheritance is depicted. In this

case, one class is descended from multiple classes.

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS

4 / NEERAJ : OBJECT ORIENTED ANALYSIS AND DESIGN

Fly Things Run Things

Aeroplane Helicopter Car

Fig. 3: Multiple inheritance
Polymorphism

Polymorphism and inheritance are linked.
Polymorphism lets a subclass replace a superclass.

If many attributes are implemented, the class
hierarchy decides. An object-oriented programme to
calculate the area of different Figures would simply call
the Find_ Area action on each figure, whether it is a
circle, triangle, or something else. Based on its class,
each object implicitly chooses a process.

Polymorphism simplifies maintenance by avoi-
ding code changes when new classes are added.
Polymorphism makes applications more versatile and
changeable.
BASIC CONSTRUCTS IN OBJECT
ORIENTATION

Objects and their attributes are described in
object-oriented modeling. Objects are created in every
system to serve a purpose. Some properties of object
orientation are utilised to define the responsibilities
of objects. We shall talk about these features, which
include the following, in this section:

zz Class and Objects,
zz Links and Association, and
zz Generalization and Inheritance.

Class and Objects
A class is a grouping of objects or ideas with similar

properties. Each of these items or ideas is referred to
as an object.

Classes specify the fundamental terms of the
modelled system. It tends to substantially improve
understanding and agreement about the definitions of
words and other properties of the objects in the system
to use a set of classes as the core vocabulary of a
software project.

Data modeling can be built on top of classes. Let’s
examine how attributes and operations represent the
traits that classes have in common.

Here is a list of these terms’ definitions:

Slots for class-specific data values are referred to
as attributes. The values of the attributes of the various
objects in a particular class often differ to some extent.

Operations are services that an object can use
to modify its own behaviour or the behaviour of the
system as a whole.

We’ll talk about the accepted class notation here.
A class is represented as a box with three sections.
According to figure 4, the class is divided into three
sections: the top portion contains the class name in
boldface, the middle section contains the class’s
characteristics, and the bottom section contains the
class’s actions.

Class
Attribute

Operations

Fig. 4: Class notation
A class can be displayed without its actions or

properties, or it can only have its name displayed, as
in figure 5.

Class

AttributeOperations

Class
Class

Fig. 5: Alternate class notations
The following is the class naming scheme:
zz Simple nouns or noun phrases are used as class

names.
zz Simple nouns or noun phrases are used as

attribute names in classes. The second and
following words may be capitalised, but the first
word is not.

zz Operation names are straightforward verbs.
Similar to characteristics, the first word is not
capitalised, but further words may be.

Objects: The basic form of the notation for an
object and a class is the same. The three distinctions
between the notations are as follows:

zz The name of the class to which the object
belongs is displayed in the class box’s upper
part following a colon. Depending on whether
the object is named—in which case the name
appears before the colon—or anonymous, the
colon will be followed by nothing.

zz The upper compartment’s contents are
highlighted next to an item.

zz Each attribute assigned to the specified class has
a unique value for each object that falls under
its purview.

www.neerajbooks.com

www.neerajbooks.com

	Sample Chapter Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng

	BPAS-186-EM-STARTING AND CONTENT.pdf
	Starting Page 2022 Final
	Content Final eng

	BPAS-186-EM-PAPERS.pdf
	June-2023
	December-2022
	June-2022
	Sample Paper 1

	Sample Question Paper Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng

	MCS-219-EM-PAPERS.pdf
	1
	2
	3
	TERM & CONDITION.pdf
	June-2023
	dec-2022
	Paper-1
	Paper-2
	Term & Conditions.pdf
	Page 1
	Page 2

	MCS-219-EM-STARTING PAGES.pdf
	Starting Page MCS-219
	Content Final eng

