NEERAJ
 MATHEMATICS

N-311

Chapter wise Reference Book Including Many Solved Sample Papers

Based on
N.I.O.S.Class - XII National Institute of Open Schooling

By:
Renu Gupta B.Com. (Hons.)

NEERAJ PUBLICATIONS
(Publishers of Educational Books)

Mob.: 8510009872, 8510009878 E-mail: info@neerajbooks.com Website: www.neerajbooks.comBased on: NATIONAL INSTITUTE OF OPEN SCHOOLING - XII
S.No. Chapters Page
Solved Sample Paper - 1 1-9
Solved Sample Paper - 2 1-10
Solved Sample Paper - 3 1-10
Solved Sample Paper - 4 1-10
Solved Sample Paper - 5 1-10
Module-I: Sets, Relations and Functions

1. Sets 1
2. Relations and Functions-I 12
3. Trigonometric Functions-I 32
4. Trigonometric Functions-II 51
5. Relation between Sides and Angles of A triangle 76
Module-II: Sequences and Series
6. Sequences and Series 85
7. Some Special Sequences 99
Module-III: Algebra-I
8. Complex Numbers 105
9. Quadratic Equations and Linear Inequalities 121
10. Principle of Mathematical Induction 141
11. Permutations and Combinations 151
12. Binomial Theorem 163
S.No. Chapter Page
Module-IV: Co-ordinate Geometry
13. Cartesian System of Rectangular Co-ordinates 172
14. Straight Lines 188
15. Circles 202
16. Conic Sections 205
Module-V: Statistics and Probability
17. Measures of Dispersion 212
18. Random Experiments and Events 229
19. Probability 231
Module-VI: Algebra-II
20. Matrices 250
21. Determinants 278
22. Inverse of a Matrix and its Applications 291
Module-VII: Relations and Functions
23. Relations and Functions-II 319
24. Inverse Trigonometric Functions 331
Module-VIII: Calculus
25. Limits and Continuity 341
26. Differentiation 363
27. Differentiation of Trigonometric Functions 377
28. Differentiation of Exponential and Logarithmic Functions 389
29. Application of Derivatives 406
30. Integration 445
31. Definite Integrals 470
32. Differential Equations 487

Solved Sample Paper - 1 Based on NIOS (National Institute of Open Schooling) Mathematics - XII

Note: (i) This question paper consists of four sections A, B, C and D containing 33 questions.
(ii) Question Number 1 to 10 in Section A are Multiple Choice Questions (MCQ). Each question carries one mark. In each question there are four choices (A, (B), (C) and (D) of which only one is correct. You have to select the correct choice and indicate it in your answer book by writing (A), (B), (C) or (D) as the case may be. No seperate time its allotted for attempting MCQs.
(iii) Question Number 11 to $\mathbf{1 6}$ in Section B are very short answer questions and carry 2 marks each.
(iv) Question Number 17 to 28 in Section C are short answer questions and carry 4 marks each.
(v) Question Number 29 to 33 in Section D are long answer questions and carry 6 marks each.
(vi) All questions are compulsory. There is no overall choice, however, alternative choices are given in some questions. In such questions, you have to attempt only one choice.

SECTION -A
Q. 1. The matrix $A=\left[\begin{array}{lll}0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0\end{array}\right]$ is a:
(a) Scalar matrix
(b) Diagonal matrix
(c) Unit matrix
(d) Square matrix

Ans. (a) Scalar matrix.
Q. 2. If $A=\{a, b\}$, then the number of binary operations that can be defined on A :
(a) 16
(b) 4
(c) 2
(d) 1

Ans. (a) 16.
Q. 3. The principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$ is:
(a) $-\frac{\pi}{6}$
(b) $-\frac{\pi}{3}$
(c) $\frac{5 \pi}{6}$
(d) $\frac{2 \pi}{3}$

Ans. (d) $\frac{2 \pi}{3}$.
Q. 4. The degree of the differential equation $\left(\frac{d^{3} y}{d x^{2}}\right)-\left(\frac{d y}{d x}\right)^{3}-\sin ^{2} x=0$ is:
(a) 3
(b) 2
(c) 1
(d) not defined

Ans. (b) 2.
Q. 5. $\int e^{x}(\sin x+\cos x) d x$ is equal to:
(a) $\mathrm{e}^{x} \cos x+c$
(b) $-e^{x} \cos x+c$
(c) $\mathrm{e}^{x} \sin x+c$
(d) $-e^{x} \sin x+c$

Ans. (c) $e^{x} \sin x+c$.
Q. 6. $\int \tan x d x$ is equal to:
(a) $\sec ^{2} x+c$
(b) $\sec x \tan x+c$
(c) $\log |\sec x|+c$
(d) $\log |\cos x|+c$

Ans. (c) $\log |\sec x|+c$.
Q. 7. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$ is equal to:
(a) 1
(b) $\frac{1}{5}$
(c) 5
(d) 0

Ans. (c) 5.
Q. 8. The differential coefficient of $\sec \left(\tan ^{-1} x\right)$ with respect to x is:
(a) $\frac{x}{1+x^{2}}$
(b) $\frac{x}{\sqrt{1+x^{2}}} \vec{b}=\hat{j}-\hat{k}-\frac{\pi}{6}$
(c) $x \sqrt{1+x^{2}}$
(d) $\frac{1}{\sqrt{1+x^{2}}}$

Ans. (c) $\frac{x}{\sqrt{1+x^{2}}}$.
Q. 9. The angle between the vectors $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}-\hat{k}$ is:
(a) $-\frac{\pi}{3}$
(b) $\frac{\pi}{3}$
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{6}$

Ans. (b) $\frac{\pi}{3}$
Q. 10. Which of the following sentences is not a

statement?

(a) The sun is a star
(b) Lahore is in India
(c) Every rectangle is a square
(d) Mathematics is a fun

Ans. (d) Mathematics is a fun.

SECTION - B

Q. 11. If $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$, find $3 A-B$.

Ans.

$$
A=\left[\begin{array}{ll}
2 & 4 \\
3 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 5 \\
3 & 4
\end{array}\right]
$$

$\Rightarrow \quad 3 A-B=3\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$
$=\left[\begin{array}{ll}2 \times 3 & 4 \times 3 \\ 3 \times 3 & 2 \times 3\end{array}\right]-\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$
$=\left[\begin{array}{cc}6 & 12 \\ 9 & 6\end{array}\right]-\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$

$$
=\left[\begin{array}{cc}
6-(-2) & 12-5 \\
9-3 & 6-4
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
8 & 7 \\
6 & 2
\end{array}\right]
$$

Or
If $\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 4 & 1\end{array}\right]+A=\left[\begin{array}{ccc}3 & 5 & 6 \\ -1 & 0 & 3\end{array}\right]$, find the matrix A.

Ans. $\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 4 & 1\end{array}\right]+\mathrm{A}=\left[\begin{array}{ccc}3 & 5 & 6 \\ -1 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
3 & 5 & 6 \\
-1 & 0 & 3
\end{array}\right]-\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 4 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3-1 & 5-2 & 6-(-3) \\
-1-0 & 0-4 & 3-1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 3 & 9 \\
-1 & -4 & 2
\end{array}\right] \text { Ans. }
\end{aligned}
$$

Q. 12. Does the following graph represent a function? Justify your answer.

Ans. Functions need to be well-defined as part of their definition, so for a given input there can only be one output. In the given graph if we draw a vertical line, we can have the two values, thus it is not a function.

Q. 13. If $y=e^{x} \cos x$, find $\frac{d^{2} y}{d x^{2}}$.

Ans. $\quad y=e^{x} \cos x$

MODULE-I: SETS, RELATIONS AND FUNCTIONS

Sets

CHAPTER AT A GLANCE

Definition: A set is a well defined collection of distinguishable objects.

A collection may or may not be a set. A collection will not be a set if objects cannot be distinguished, for example: A collection of most loving parents of a particular locality is not a set as measurement of love is not possible. Similarly, there are many things that can not be measured. Their collection is not a set. Only a collection whose elements are distinguishable can be defined as a set.

So, we give a list as follows:

A collection not a set	A collection which is set
1. Rich people of Delhi.	1. People with more than Rs. 1 Lac in their bank.
2. Good mannered students of class XII.	2. Students of class XII who daily say, "Good Morning" to their Principal.
3. Interesting books	
written by Prem	3. Collection of books written by Prem
4. Hard working stud-	
ents of class XI.	4. Students of class XI who study at least 4 hours daily at home.

Some Notation in set theory:
$\mathrm{N} \quad$: The set of natural numbers.
W : The set of whole numbers.
Z or I : The set of integers.
$\mathrm{Z}^{+} \quad: \quad$ The set of positive integers.
$Z^{-} \quad: \quad$ The set of negative integers.
Q : The set of rational numbers.
$\mathrm{R} \quad$: The set of real numbers.
C : The set of complex numbers.

\in	$:$	Belongs to.
\notin	$:$	does not belong to.
\exists	$:$	There exists.
\subset	$:$	Subset of.
$\not \subset$	$:$	not a subset of.
\supset	$:$	super set.
$\not \subset$	$:$	not a super set.
$\$$	$:$	does not exist.

How to Represent a Set?

1. Roaster Form or Tabular Form : Listing the individual elements/members in paranthes is roaster form. For example:

$$
\begin{aligned}
& \mathrm{A}=\{1,2,3, \ldots \ldots, 10\} \\
& \mathrm{B}=\{\text { Elephant, Horse, Donkey }\} \\
& \mathrm{C}=\{a, e, i, o, u\}
\end{aligned}
$$

2. Set Builder Form: When we define a property of each element of a set, we have set builder form. For example:

$$
\begin{aligned}
& \mathrm{A}=\{x: x \in \mathrm{~N}, x \leq 10\} \\
& \mathrm{B}=\{x: x \text { is elephant, or horse or donkey }\} \\
& \mathrm{C}=\{x: x \text { is a vowel of English alphabet }\}
\end{aligned}
$$

Type of Sets

1. Finite Set: If the number of element in a set is countable, then it is called a finite set.
e.g.

$$
\begin{aligned}
& \mathrm{A}=\{1,2, \ldots \ldots \ldots \ldots \ldots . .1000\} \\
& \mathrm{B}=\{2,4, \ldots \ldots ., 2 n, n<1 \text { million } n \in \mathrm{~N}\}
\end{aligned}
$$

A, B are finite sets.
2. Infinite Set: A set which has uncountable elements is called an infinite set

$$
\begin{array}{ll}
\text { e.g. } & \mathrm{A}=\{1,2,3, \ldots \ldots \ldots . .\} \\
& \mathrm{B}=\{\ldots \ldots .,-3,-2,-1,0,1,2\}
\end{array}
$$

A, B are infinite sets.
3. Empty Set: The set with no element is called an empty set. It is written as $\}$ or $\phi .$, i.e.,

$$
\phi=\{ \}
$$

We must note that $0,\{0\}$ or $\{\phi\}$ are not empty sets.
4. Singleton Set: A set with only one element is called a singleton, e.g.,

$$
\begin{aligned}
& \mathrm{A}=\{a\} \\
& \mathrm{B}=\{x: x \text { is an even prime number }\}
\end{aligned}
$$

A, B are singleton.
5. Equal Sets: Two or more sets are called equal sets if they contain exactly same elements.

$$
\begin{array}{ll}
\text { e.g. } & \mathrm{A}=\{2\} \\
& \mathrm{B}=\{x: x \text { is an even prime number }\} \\
\therefore & \mathrm{A}=\mathrm{B} \\
\text { or } & \{1,2,3\}=\{3,2,1\}
\end{array}
$$

6. Equivalent Sets: Two sets having equal number of elements (they may have different elements) are called equivalent sets.
e.g. $\{1,2,3\}$ and $\{a, b, c\}$ are equivalent sets.
7. Disjoint Sets: Two sets that have no element in common are called disjoint sets.
e.g. $\quad\{1,2,3\},\{5,6,7\}$ are disjoint sets.

Subset
Definition: Let A and B be two sets such that every element of A is also an element of B, then A is subset of B , written as, $\mathrm{A} \subseteq \mathrm{B}$.

In case B has at least one element more than B then A is called a proper subset of B and B is called the superset of A , i.e., $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \supset \mathrm{A}$.

We note if $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$

$$
\Rightarrow \quad \mathrm{A}=\mathrm{B}
$$

Also empty set (null or void set) ϕ is subset of every set A, i.e. $\phi \subset$ A.

Power Set

Definition: A set of all subsets of a set A is called the power set of A.

$$
\text { Let } \quad \mathrm{A}=\{p, q\}
$$

then all possible subsets of A, viz.,
$\phi,\{p\},\{q\},\{p, q\}$ written in set form, i.e.
$\mathrm{P}(\mathrm{A})=\{\phi,\{p\},\{q\},\{p, q\}\}$ is the power set of A .
Universal Set
Definition: If a set U is superset of all sets under consideration, then U is called the Universal Set.

Another definition could be as follows:
If every set under consideration, say A, B, C, D etc. are subsets of a set U then U is called the Universal for these sets A, B, C, D, etc.

Venn Diagram

Sets could be represented by diagrams, known as Venn diagram, so called in honour of introducer of this method, The British Mathematician John Venn.

A Universal set \cup can be represented in a rectangular form and all other sets which will be subsets of \cup, by circles.

For example, if

$$
\begin{aligned}
& \mathrm{A}=\{1,3,5,7\} \\
& \mathrm{B}=\{1,2,3,4,5,6\} \\
& \mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}
\end{aligned}
$$

Then Venn diagram is as follows:

Difference of Sets: Let A and B be any two sets then their difference $\mathrm{A}-\mathrm{B}$ is defined as the sets of elements of A not common with elements of B.

In fact, we first return back to Universal Set with a very interesting discussion as follows:

We know the set U whose subsets are all sets under consideration is called Universal set. Let me ask the following question:
"Is there a 'Universal Set?" What I mean by this is - Is there a Universal set which contains every possible objects (or even ideas)?

Well let such a set, say N is possible, i.e., $\mathrm{N}=$ set of all objects possible in the world.

Then obviously $\mathrm{N} \subseteq \mathrm{N}$. But let us ask a very relevant question, viz.

Does

$$
\mathrm{N} \in \mathrm{~N} ?
$$

There are only two possibilities - either $\mathrm{N} \in \mathrm{N}$ or $\mathrm{N} \notin \mathrm{N}$, and third possibility, that is, $\mathrm{N} \in \mathrm{N}$ and $\mathrm{N} \notin \mathrm{N}$ is totally ruled out. Reason is clear that such a confusing situation makes the collection N not a set, whereas we have taken N as a set.

Now we discuss above two possiblities one by one
Case I: Let $\quad N \in N$
$\Rightarrow \mathrm{N}$ is an element of $\operatorname{set} \mathrm{N}$.
$\Rightarrow \mathrm{N}$ is not a set.
$\Rightarrow \mathrm{NI} \mathrm{N}$.
Case II: Lert N I N.
$\Rightarrow \mathrm{N}$ is one element in the world which is not in N and So the definition of N as in (1) is violated.
$\Rightarrow \quad \mathrm{N} \in \mathrm{N}$.
So we have
(i) $\quad \mathrm{N} \in \mathrm{N} \Rightarrow \mathrm{N}$ İ N
(ii) $\quad \mathrm{N}$ Ï $\mathrm{N} \Rightarrow \mathrm{N} \in \mathrm{N}$

So (i) equation and (ii) are totally absurd conclusions of above discussion. How about it? What is wrong with this? Is there something wrong with the definition of N ? Not really except that N is different type of set all together. In fact N is an abnormal set. All other sets are normal sets. Only this particular one to above analogy. So we can say in normal sense, there is no Universal set of elements of all Universal sets.

Here is a parallel discussion of above in a different setting:

Let us have a locality A which has a barber B who shaves all people of A. No other barber does visit A and nor does a person of A go outside for the purpose of shave.

Now B must be shaved too. We have a basic rule in the words of B as B saying.
"I shave those and only those who do not shave themselves."

Question is-"Does B shave himself ?"
Obviously answer can be either yes or no, both yes and no are not possible in view of 'those and only those, condition contained in what B says.

Now let us take each of the possible answers one by one.

Case I : Yes $\Rightarrow B$ shaves himself.
But B is the barber who does not shave anyone except 'non-self-shavers' if I can use the words for 'those who do not shave themselves'. So, B being a 'self shaver' cannot shave himself as a barber.
i.e., Yes \Rightarrow No, he cannot shave himself.

Case II: No $\Rightarrow \mathrm{He}$ is a 'non-self shaver' and since as a barber ' B ' has got to shave ' B ' as a person.
\Rightarrow If barber B does not shave B as a person, he has to shave B.
i.e., $N o \Rightarrow$ Yes, he has to shave himself.

So paradoxically, Yes \Rightarrow No and No \Rightarrow Yes.
Hence our conclusion is:
"There is no Universal 'Universal Set' and any Universal set is specific to a particular situation only."

Now we are in a position to define what is called the complement of a set.
Let $\quad U=$ Universal Set
and $\quad \mathrm{A}=\mathrm{A}$ set such that $\mathrm{A} \subseteq \mathrm{U}$,
then complement of A written as A^{\prime} or A^{c} is, -

$$
\mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A}
$$

Let us explain the complement of a set by an example. Let $\quad U=$ Set of Natural numbers

A = Set of even Natural numbers
then

$$
\mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A}
$$

$=$ Set of odd natural numbers
It is very clear only odd and even natural numbers exist so;

Complement of even natural numbers $=$ Set of odd natural numbers and

Complement of odd natural numbers $=$ set of even natural numbers.

Let us take the following questions and solve them to explain difference and complement of a set by Venn diagram and Roaster Set builder form.

Intersection of Sets

Definition: Let A, B be two sets, then their intersection written as $\mathrm{A} \cap \mathrm{B}$ is defined as the set of common elements of elements of A and B , i.e.,

$$
\mathrm{A} \cap \mathrm{~B}=\{x: x \in \mathrm{~A} \text { and } x \in \mathrm{~B}\}
$$

In Venn diagram, the same could be depicted by shaded region as shown below:

Disjoint Sets: Two sets A and B are said to be the disjoint sets if they have no element in common, i.e.,

$$
\mathrm{A} \cap \mathrm{~B}=\phi .
$$

Venn Diagram for disjoint sets, A, B is given below:

A, B are disjoined $\Rightarrow \mathrm{A} \cap \mathrm{B}=\phi$.

Union of Sets

Definition: If A, B be two sets then their union, written as $A \cup B$ is the set of elements of either set A or set B or their intersection, i.e.,

$$
\mathrm{A} \cup \mathrm{~B}=\{x: x \in \mathrm{~A} \text { or } x \in \mathrm{~B}\}
$$

As repetition of elements in a set is of no use and their order of writing too does not matter, So by Venn Diagram, we can have $\mathrm{A} \cup \mathrm{B}$ as follows:

CHECK YOUR PROGRESS 1.1

Q. 1. Which of the following collections are sets?
(i) The collection of days in a week starting with S .
(ii) The collection of natural numbers upto fifty.
(iii) The collection of poems written by Tulsidas.
(iv) The collection of fat students of your school.
Ans. (i) The collection of days in a week starting with $S=\{$ Sunday, Saturday $\}$ is a set.

4/ NEERAJ : MATHEMATICS (N.I.O.S.-XII)
(ii) The collection of natural numbers upto fifty $=\{1,2,3, \ldots \ldots ., 50\}$ is a set.
(iii) Collection of poems written by Tulsidas is a set.
(iv) The collection of fat students of your school is not a set as fatness cannot be measured.
Q. 2. Insert the appropriate symbol in blank spaces.

If $\mathrm{A}=\{1,2,3\}$.
(i) 1.
1........... A
(ii) 4........A.

Ans. Given $\mathrm{A}=\{1,2,3\}$
(i) $1 \ldots . \ldots . \mathrm{A}$
(ii) $4 \ldots . \ldots$ A
Q. 3. Write each of the following sets in the Roster form:
(i) $\mathrm{A}=\{x: x \in z$ and $-5 \leq x \leq 0\}$.
(ii) $\mathrm{B}=\left\{x: x \in \mathrm{R}\right.$ and $\left.x^{2}-1=0\right\}$.
(iii) $\mathrm{C}=\{x: x$ is a letter of the word banana $\}$.
(iv) $\mathrm{D}=\{x: x$ is a prime number and exact divisor of 60$\}$.
Sol. (i) $\mathrm{A}=\{x: x \in z$ and $-5 \leq x \leq 0\}$

$$
=\{-5,-4,-3,-2,-1,0\}
$$

(ii) $\mathrm{B}=\left\{x: x \in \mathrm{R}\right.$ and $\left.x^{2}-1=0\right\}$
(iii) $\quad \begin{aligned} \mathrm{C} & =\{x: x \text { is a letter of the word banana }\} \\ & =\{b, a, n\}\end{aligned}$
(iv) $\quad \mathrm{D}=\{x: x$ is a prime number and exact divisor of 60$\}$

$$
=\{2,3,5\}
$$

Q. 4. Write each of the following sets in the set builder form:
(i) $\mathrm{A}=\{\mathbf{2}, 4,6,8,10\}$
(ii) $\mathrm{B}=\{\mathbf{3}, 6,9, \ldots \ldots \infty\}$
(iii) $\mathrm{C}=\{2,3,5,7\}$
(iv) $\mathrm{D}=\{-\sqrt{2}, \sqrt{2}\}$

Are A and B disjoints sets?
Sol. (i)

$$
\begin{align*}
\mathrm{A} & =\{2,4,6,8,10\} \\
& =\{x: x=2 y, y \in \mathrm{~N}, y \leq 5\} \\
\mathrm{B} & =\{3,6,9, \ldots \ldots \infty\} \\
& =\{x: x=3 y, y \in \mathrm{~N}\} \\
\mathrm{C} & =\{2,3,5,7\} \tag{iii}\\
& =\{x: x \text { is a prime number } \leq 7\} \\
\mathrm{D} & =\{-\sqrt{2}, \sqrt{2}\} \\
& =\left\{x: x \in \mathrm{R} \text { and } x^{2}-2=0\right\}
\end{align*}
$$

(ii)
(iv)

As $6 \in A, 6 \in B$
So A, B are not disjoint.
Q. 5. Which of the following sets are finite and which are infinite?
(i) Set of lines which are parallel to a given line.
(ii) Set of animals on the earth.
(iii) Set of Natural numbers less than or equal to fifty.
(iv) Set of points on a circle.

Ans. (i) Infinite; (ii) Finite; (iii) Finite; (iv) Infinite.
Q. 6. Which of the following are null set or singleton?
(i) $\mathrm{A}=\{x: x \in \mathrm{R}$ and x is a solution of $\left.\mathrm{x}^{2}+2=0\right\}$.
(ii) $B=\{x: x \in Z$ and x is a solution of $x-3=0\}$.
(iii) $\mathrm{C}=\{x: x \in \mathbb{Z}$ and x is a solution of $\left.x^{2}-2=0\right\}$.
(iv) $\mathrm{D}=\{x: x$ is a student of your school studying in both the classes XI and XII $\}$

Sol. (i) $\quad \mathrm{A}=\{x: x \in \mathrm{R}$ and x is a solution of

$$
\begin{aligned}
& \left.x^{2}+2=0\right\} \\
= & \{x: x \in \mathrm{R}, x= \pm \sqrt{2}\}
\end{aligned}
$$

$=\phi$, as $\sqrt{-2}$ is not a real number.
And so $-\sqrt{-2}$ is not a real number.
A is a null set.
(ii)

$$
\begin{aligned}
\mathrm{B} & =\{x: x \in \mathrm{Z} \\
& \text { and } x \text { is a solution of } x-3=0\} \\
& =\{x: x \in \mathrm{Z}, \text { and } x=3\}
\end{aligned}
$$

B is a singleton.
(iii)

$$
\begin{aligned}
\mathrm{C}= & \{x: x \in Z \text { and } x \text { is a } \\
& \text { solution of } \left.x^{2}-2=0\right\} \\
= & \{x: x \in Z, \text { and } x= \pm \sqrt{2}\}=\phi
\end{aligned}
$$

$\therefore \quad \mathrm{C}$ is a null set.
(iv) $\quad \mathrm{D}=\{x: x$ is a student of your school studying in both the classes XI and XII $\}$

$$
=\phi
$$

$\therefore \quad \mathrm{D}$ is a null set.
Q. 7. In the following check whether $A=B$ or A »B.
(i) $\mathrm{A}=\{a\}, \mathrm{B}=\{x: x$ is an even prime number $\}$.
(ii) $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{x: x$ is a letter of the word guava $\}$.
(iii) $\mathrm{A}=\left\{x: x\right.$ is a solution of $\left.x^{2}-5 x+6=0\right\}$, $B=\{2,3\}$.
Sol. (i)

$$
\begin{aligned}
& \mathrm{A}=\{a\} \\
& \mathrm{B}=\{x: x \text { is an even prime number }\} \\
& \mathrm{B}=\{2\}
\end{aligned}
$$

$\therefore \quad$ A, B are equivalent sets.

